KDHE SECTOR ASSESSMENT DECISION

SITE/FACILITY NAME: Standard Products, Inc. (Former)

Alias Site Names:

Address: 650 East Gilbert

City: Wichita County or Parish: Sedgwick State: Kansas

Refer to Report Dated: February, 2008 Report type: Unified Focused Assessment

Report Developed by: Robert Benne (KDHE)

DECISION: (1) Documented impact from radium dial operations. (2) Elevated levels of radium-226, arsenic, lead, and cadmium are present in soils above RSK levels and EPA-NRC screening levels (radium-226). (3) Radium-226 was also detected in ground water above EPA screening levels attributable to the site. (4) Site may qualify for further CERCLA response, including a removal action. (5) Responsible party search needed.

DISCUSSION/RATIONALE: The Standard Products, Inc. (Former) facility was located at the above address in Wichita, Sedgwick County, Kansas. The facility was the location of an aircraft instrument repair shop in the 1950s and 1960s. According to historical records reviewed for the Unified Focused Assessment, Standard Products took the name Standard Precision Inc., in 1965. Standard Precision, Inc., applied for a Kansas Radioactive Materials License. The facility moved to another location and operated as Standard Precision, Inc.; this site was also assessed through a Unified Focused Assessment and was documented as impacted by radium-226. National Cash Register (NCR) later acquired Standard Precision's assests from an NCR subsidiary that owned Standard Precision, Inc. The Standard Precision license was terminated in 1973 by NCR.

During the UFA, the maximum radium-226 laboratory detection in soil was 81,800 pCi/g, above its EPA/NRC screening level of 5 pCi/g plus background (using the maximum site-specific background result equates to 6.61 pCi/g). Elevated levels of lead, arsenic and cadmium were also identified in soils above RSK values. Multiple volatile organic compounds were identified in ground water, which is likely associated with the Gilbert and Mosley site. Radium-226 was identified in ground water above its MCL of 5 pCi/L at 156 pCi/L and appears to be attributable to the former Standard Products, Inc., facility.

The site appears to qualify for further CERCLA response including a Removal Site Evaluation if a PRP is not identified to participate in a KDHE program.

Report Reviewed By:

Randolph L. Brown, KDHE/BER

Signature:

Date: 04/24/08

Date: 04/25/08

Site Decision

Made by: Rick L. Bean, Chief, Remedial Section, KDHE

Signature:

40301890 Superfund

Curtis State Office Building 1000 SW Jackson, Suite 410 Topeka, Kansas 66614-1367

Kansas Department of Health and Environment

Unified Focused Assessment Report

Standard Products, Inc. (Former) 650 East Gilbert Street Wichita, Kansas

Bureau of Environmental Remediation

UNIFIED FOCUSED ASSESSMENT REPORT

Standard Products, Inc. (Former) 650 East Gilbert Street, Wichita, Kansas

Prepared by:
Kansas Department of Health and Environment
Bureau of Environmental Remediation
Remedial Section
Site Assessment Program

February 2008

State ID: C2-087-72288

Project Manager: Robert E. Benne, Environmental Scientist II

Field Team Members:

Randy Brown, Professional Geologist IV
Farrell Dallen, Environmental Technician IV
Mike LaBuda, Environmental Technician IV
Jessica Walker, Geology Associate

TABLE OF CONTENTS

1.0	Introd	uction	. 1
1.1	Pur	pose	. 1
1.2	Gen	eral History	. 1
2.0	Proper	rty Location and Description	. 2
3.0		rty Background	
3.1	Hist	ory	. 2
3.2	Prev	vious Investigations	. 3
3.3	Rec	ords Review	. 3
3.	3.1	Aerial Photographs	. 3
3.	3.2	Property Ownership	. 3
3.	3.3	Sanborn Maps	. 3
3.	3.4	Receptors	. 4
3.	3.5	Federal and State Contaminated Site Search	. 4
4.0	Physic	al Settingal Setting	. 4
4.1	Cur	rent Site Conditions	. 4
4.2	Lan	d Use	. 4
4.3	Soil	s and Geology	. 5
4.4		rogeology	
5.0	Recep	tors	. 6
5.1		nan Receptors and Risk	
5.	1.1	Soil Pathway	
5.	1.2	Risk	. 6
5.	1.3	Ground Water Pathway	. 6
5.	1.4	Risk	. 7
5.2	Env	ironmental Receptors and Risk	. 7
	2.1	Receptors	
5.	2.2	Risk	. 7
6.0	Assess	ment Activities	. 7
6.1	Des	criptions of UFA Activities	. 7
6.	1.1	Field Objectives and Sampling Rationale	. 7
6.	1.2	Field Procedures	
	6.1.2.1	Soil Sampling Methods	. 8
	6.1.2.2	Ground Water Sampling Methods	. 9
6.2	Sam	pling Plan Deviations	
7.0	Assess	ment Results	. 9
7.1	Fiel	d Screening Results	. 9
7.2	Lab	oratory Results	10
7.	2.1	Soil Results	
7.	2.2	Ground Water Results	
7.3	Qua	lity Assurance / Quality Control Results	
7.	3.1	Comparison of Field and Laboratory Analysis	
8.0	Summ	ary and Conclusions	12

8.1	Summary	12
8.2	Conclusions	
9.0	References	
10.0	Appendices	
A. B. C. D. E.	Tables & Figures EDR Report KGS Well Data Field Notes Photographic Documentation Analytical Data	

1.0 Introduction

1.1 Purpose

The former Standard Products, Inc., (SPI) property was recommended for an environmental assessment as a result of a process that identified and ranked radium dial shop facilities in Kansas. The assessment is referred to as a Unified Focused Assessment (UFA) because elements of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) assessments; American Society for Testing and Materials (ASTM) Phase One and Phase Two environmental assessments; and *All Appropriate Inquiry* (AAI) components are included in the scope of the UFA assessment process. The purpose of this UFA is to determine whether the SPI property poses a threat to human health and the environment, and to propose recommendations for further action if necessary. The UFA performed for this property was consistent with the KDHE Work Scope for Radium Dial Shop Facilities.

1.2 General History

Radioluminescent paint and radium luminous compounds have been used extensively on watch and clock faces since the early 1900's. The use of early consumer products having radium as a component (hair tonic, toothpaste, ointments, elixirs, etc.) was terminated relatively quickly for health and safety reasons as the effects of radium exposure were elucidated. The wide use of radium in luminescent paints continued through World War II because the soft glow of radium-produced luminescence made aircraft dials, gauges, and other instruments visible to operators at night. Radium bromide is often mixed with zinc sulphide to produce a mixture used for luminous dials. The radium gives off radiation causing the zinc sulphide to glow.

By the 1960's more than 75 percent of the light aircraft produced in the United States were fabricated in the vicinity of Wichita, Kansas. Radium dial repair shops were set up in the Wichita area soon after World War II to upgrade and repair radium-bearing aircraft instruments. During this repair process the dials containing radium-bearing paint were removed, the radium-bearing paint stripped from the dials with solvent, and the dials repainted. These teardown and dial-stripping operations are potential sources for solvent, heavy metal, and radium contamination of buildings, soil, and ground water. Radium-226 (the first radioactive material used in radioluminescent paint) has not typically been used in commercial dial instrument repair since the 1970's in Kansas.

In Kansas, these types of facilities are or were licensed or should have been licensed by KDHE's Bureau of Air and Radiation (BAR) to use radioactive materials.

2.0 Property Location and Description

The former SPI radium dial shop facility was located at 650 East Gilbert Street in Wichita, Kansas. The property is located in the Northwest ¼ of Section 28, Township 27 South and Range 1 East, in east central Sedgwick County, Kansas (see Figure 1). The latitude and longitude of the property is North 37.674880° latitude and West -97.330500° longitude. Prior to obtaining a radioactive materials license SPI apparently operated at this location from as early as 1952 to as late as 1962. A property and vicinity location map showing the one property structure (warehouse building) and surrounding area is included as Figure 2 of Appendix A. An archive aerial photograph from 1950 shows a building complex of at least two structures that cover the eastern and southern extent of the property (see Figure 3). The polygonal-shaped commercial property encompasses approximately two and two-thirds acres, oriented north to south. The newer vintage warehouse building (located in the southeastern portion of the property area) covers approximately 11,000 square feet of space.

3.0 Property Background

3.1 History

The facility was in operation repairing aircraft instruments (including some with radium dials and faces) at this location from approximately 1952 to as late as 1962 under the business name Standard Products, Inc. SPI is listed in the 1952 Polk Directories for Wichita as being located at 650 East Gilbert Street (pre-license period). The company was incorporated in 1949. The exact nature of pre-license operations before 1953 is unknown, including the handling or use of radium dial instruments or paint.

Information from the Kansas Department of Health and Environment (KDHE) Bureau of Waste Management (BWM) files was nonexistent for SPI. File information for the SPI property was derived from Bureau of Air and Radiation (BAR) records and the approximate duration of operations from Polk Directories for Wichita. Directory listings for 650 E. Gilbert list both Production Products and Standard Products as tenants from 1952 to 1961, sharing a phone number. Corporate records for the state of Kansas show that this Standard Products dissolved in 1961, at which time Production Products changed its name to Standard Products. Based on BAR's records the facility was conducting radium dial instruments repair as early as 1953. In 1963, the then Standard Products, was renamed Standard Precision. In 1965 Standard Precision, Inc., applied for a radioactive materials license and was granted license #25-R061-01 in January 1966, by which time Standard Precision's business activity had been relocated to 4105 West Pawnee. Before that, several Kansas State Board of Health inspections (from 1953-55, 1959, and 1962) were conducted at the East Gilbert property. The inspections focused on personnel, work and storage surfaces, and the interior of the facility. Waste storage barrels located in the alley area east of the facility were screened and showed

radiation levels ranging from 6.5 to 55 (top to bottom of barrel) milliroentgens per hour (mR/hr). It is not known if a formal closeout survey was performed for the Gilbert property, but it is assumed if one was it only focused on internal building contamination. Information from a survey memorandum from the State Department of Health dated August 14, 1967, related the property had been impacted by a tornado two years earlier. The portion of the building at the Gilbert Street property where the radium painting had taken place now consisted of only a concrete slab. Radiation was detected (in counts per minute units) on tiles covering the concrete slab.

3.2 Previous Investigations

The former SPI property is within the boundaries of the Gilbert-Mosley (GM) site. As early as 1986 KDHE identified widespread chlorinated solvent contamination affecting the ground water in the central business district of Wichita. The GM site has at least six discrete contamination plumes. Trichloroethylene (TCE), tetrachloroethylene (PCE), cis-1,2-dichloroethylene (DCE), and vinyl chloride are the predominant components of contamination associated with the plumes. In the spring of 2001 the City of Wichita began implementing a KDHE approved Remedial Action Work Plan involving extraction wells, piping, and a treatment facility. Continuous operation of the containment wells and treatment system began December 2002.

3.3 Records Review

Environmental records searches consistent with ASTM 1527 were conducted to determine if contaminant releases, environmental assessments, or remedial actions have occurred on or adjacent to the property. Environmental records information was used to determine if state- or federally-regulated facilities are located on or adjacent to the property and was used to develop an assessment sampling strategy for the property.

3.3.1 Aerial Photographs

The aerial photography for Figure 2 was acquired from 2002 statewide digital orthophoto quads (reference #25 Sanborn Map). The aerial photography (1950) for Figure 3 was acquired from the City of Wichita Planning Department (reference #13 Sanborn Map).

3.3.2 Property Ownership

A review of county appraiser and register of deeds records was performed to evaluate current and historical property ownership.

3.3.3 Sanborn Maps

There is coverage for Sanborn historical insurance maps for this property. From the 1914 map the property was historically used as a furniture manufacturing/warehouse facility with at least three different building complexes located on the east and southern portions of the property. The 1950 map indicates some consolidation of the building complexes

and the property was used to house a mattress factory, shuffle board factory, wholesale aircraft supply store (Standard Products, Inc.), and a wholesale home appliance store.

3.3.4 Receptors

Internet mapping services (such as MapQuest®), and topographic, county, and city maps were used to locate and identify potential receptors. Receptors such as schools, preschools, parks, churches, and hospitals within 0.5 miles of the former SPI property were located. Surface water bodies, wetland ecosystems, and other aquatic and terrestrial ecosystems within a 0.5 mile radius were also identified. The existence of public water supply wells, domestic wells, and public water supply surface water intakes were determined within a 1.0 mile radius of the property.

3.3.5 Federal and State Contaminated Site Search

Environmental Data Resource, Inc., (EDR) provided United States Environmental Protection Agency (EPA) and state database information in their Radius Map Report. Portions of the report are in Appendix B. EDR included 12 ASTM-required databases in its search of environmental records. See Table 1 (federal) and Table 2 (state) for a list of these databases, their corresponding ASTM radius distance, and the number of facilities reported within each radius distance. The scope of the records review did not include confirmation of the facilities listed as unmappable or orphan by regulatory databases. This radius map for the SPI property can be found in Appendix B of this report. Due to the number of monitoring wells in the area, only data from wells relatively close to the property were included in this report.

4.0 Physical Setting

4.1 Current Site Conditions

The current building located at 650 East Gilbert Street is located in the southeastern portion of the property. There is a paved alley along the southwest portion of the property that becomes unpaved as it continues to the north. Concrete foundations are located north, west and south of the building. A railroad right-of-way easement is located on the east side. A boundary dike of soil/debris surrounds a pit situated in the north portion of the property. The south frontage with Gilbert Street has a concrete sidewalk and narrow grassy right of way. An electric construction company utilizes the building for storage and at various portions of the property (especially north of the building) power and electric light poles are stored outside.

4.2 Land Use

Adjoining properties include commercial businesses adjacent the property to the south and north. To the east are railroad right-of-ways and to the south is Gilbert Street. To the

west and southwest are residential homes and a medical clinic. See Figure 2 for a property diagram and aerial photograph illustrating the subject and adjacent properties.

4.3 Soils and Geology

The topography near the property is influenced by the drainage basin of the Arkansas River. The river is located approximately three-fourths of a mile west of the property.

The Sedgwick County soil survey indicates that Canadian fine silty loam (0 to 60 inches in thickness) and the Urban land-Elandco silty loam (0 to 60 inches in thickness) is the soil type most predominant in the property area. The Canadian fine sandy loam is very friable and well drained. The Urban land-Elandco silty loam is a very friable, moderately to well-drained soil occurring in level urban or reworked areas. Air and water move through these soil types at a moderate rate and runoff is slow.

The property is situated upon unconsolidated alluvium and terrace deposits of the Arkansas River. The deposits are of Wisconsinan to Recent Age and have a saturated thickness of 60 to 70 feet. These deposits are an important aquifer in the area. The deposits are regionally composed of clayey silt and fine to coarse-grained quartz sand grading downward from fine to coarse arkosic gravel.

The Wellington Formation of the Cimmaronian Stage of the Lower Permian system underlies the unconsolidated deposits. The Wellington Formation occurs at the property at a depth of 70 to 80 feet below surface and is approximately 400 feet thick. The formation consists primarily of calcareous blue and gray shale containing several thin beds of impure limestone and thin beds of gypsum and anhydrite. Some beds of maroon and gray-green shale occur near the top of the formation. The Wellington Formation is considered the lower confining unit at the property. No wells in the property vicinity are known to obtain drinking water from this formation. Beneath these strata lie older Paleozoic sedimentary rocks, which are underlain by Precambrian granite.

4.4 Hydrogeology

Shallow ground water in the vicinity of the property occurs primarily in alluvial sand and gravel deposits. Where the sand and gravel is not present, ground water is found in silt and clay alluvium. The depth to ground water varies from 20 to 25 feet in this area. Ground water elevations demonstrate seasonal fluctuations: higher levels in the spring and lower in the fall. Ground water is assumed to flow primarily to the south in the vicinity of the property. As noted in Section 3.2 the GM redevelopment area remediation activity may modify ground water flow in the property area. The City of Wichita has installed recovery wells in the local area affecting ground water flow on the GM area.

5.0 Receptors

5.1 Human Receptors and Risk

The former SPI facility was located at 650 East Gilbert Street in Wichita, Kansas (see Figure 2). This part of Wichita consists of commercial properties with paved parking and some grassy areas between the businesses in all directions except to the east where there is a railroad right-of-way. Residential homes are located within 150 feet to the west, southwest, and south.

5.1.1 Soil Pathway

Potential soil pathway and direct contact receptors include employees of the facility and adjacent commercial facilities, maintenance and ground personnel of the area, and passers-by. It is anticipated that human contact with on-site and near surface soils is largely unlimited due to only one short stretch of confining fence located on the southwest side of the property. There are nine churches, two pre-schools, and two elementary schools located within a 0.5 mile radius of the former SPI property. Residential homes and a medical clinic border the property on the south and west sides.

5.1.2 Risk

Potential direct contact exposure pathways include dermal contact or close proximity to and the ingestion or inhalation of contaminated soils. Source areas were identified for concentrations exceeding the EPA/Nuclear Regulatory Commission (NRC) screening levels for radium-226 on the property. Source areas were identified for arsenic, cadmium, and lead above residential Risk-Based Standards of Kansas (RSK) values. Residential homes are located within 150 feet of the property. The exterior portion of the commercial lot is unsecured except for a short stretch of boundary fence along the southwest portion of the property.

5.1.3 Ground Water Pathway

Well surveys identified one nearby active well used for domestic purposes. The City of Wichita obtains its public water supply from the Wichita Well Field located within the Equus Beds region in northwest Sedgwick and southwest Harvey counties.

EDR, a contract information services company, has a comprehensive list of water wells near the property (see Appendix B). The Kansas Geological Survey (KGS) water well database indicates there are 155 wells in Section 28 of Township 28 South and Range 1 East. The SPI property is located in the northwest portion of Section 28. Within Section 28 there are 96 active monitoring wells, one well designated as other, one domestic well, one well designated for air conditioning, seven recovery/soil vapor/soil vent wells, three

injection/air sparge wells, eight lawn and garden wells, and 39 plugged wells. A copy of the KGS water well database search is included in Appendix C.

5.1.4 Risk

Data obtained during the UFA does indicate contaminant releases of hazardous substances to ground water associated with the property. Radium-226 concentrations from sample location #5 exceed its federal standard and TCE levels from every sampled location exceed the primary MCL for TCE.

5.2 Environmental Receptors and Risk

5.2.1 Receptors

Site reconnaissance activities and UFA research identified two ecologically sensitive areas just outside a 0.5-mile radius (west) of the former SPI property. The wetland areas are associated with the Arkansas River west of the property as shown on the National Wetlands Inventory Map (Figure 4). Based on the site reconnaissance, significant surface water runoff is not anticipated based on the existing topography. Surface water runoff will likely flow overland to storm sewers in the vicinity of the property.

5.2.2 Risk

Data obtained during the UFA does not suggest releases to nearby surface water bodies associated with the property.

6.0 Assessment Activities

6.1 Descriptions of UFA Activities

The following sections provide a description of the field activities conducted for the UFA on August 16, September 5, and December 5, 2007. Field activities (see Table 3 for personnel) included field screening for radium-226 and the collection of ground water and soil samples for analysis of radium-226, the eight Resource Conservation and Recovery Act (RCRA) metals, and volatile organic compounds (VOCs). The eight RCRA metals are arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. Field activities were recorded in the field logbook, a copy of which is provided in Appendix D. Photographs of the property with field sampling locations are provided in Appendix E.

6.1.1 Field Objectives and Sampling Rationale

Permission to access the SPI property was obtained prior to initiation of field activities. Field investigation procedures therefore followed the Approach A sampling protocol

outlined in Section 3.0 of the KDHE work scope. Accordingly, KDHE collected soil and ground water samples from downgradient and adjacent to the facility footprint where possible. Two upgradient soil samples (upwind in the predominant wind direction) and an upgradient (as to ground water flow) ground water sample were also collected to serve as background samples.

As prescribed by the project work scope, KDHE developed a Field Sampling Plan outlining field-sampling methods. Field procedures were designed in accordance with the scope criteria and in response to the environmental conditions noted in Section 3.2. All field activities were conducted in accordance with the project Field Sampling Plan approved by KDHE and dated August 22, 2007. The following sections describe field methods in detail.

6.1.2 Field Procedures

Kansas One-Call was notified before field activity began to mark buried utilities. The sampling locations were flagged. The flagged location coordinate position was obtained using Garmin eTrex® global positioning system (GPS) equipment. Surface soil samples (0-0.5 feet in depth) were obtained by hand digging using stainless steel trowels. Soil samples (ranging from 0 to 8 feet) were collected using a Geoprobe® with clear acetate liner Macro-cores® where possible. The probes were pushed deep enough to encounter ground water or refusal. Ground water samples were obtained using polyethylene tubing equipped with a check valve. All investigation-derived waste (IDW) generated, including personal protective equipment, paper towels, etc., was placed in trash bags and properly disposed of off-site.

6.1.2.1 Soil Sampling Methods

Soil samples numbered by sampling location and depth interval were obtained (see Table 4 for location rationale and sampling parameters), including one upgradient ground water and two upgradient soil background locations (see Figure 5). Completely filled Macrocore® core-barrel recovery was usually attained, although in some locations non-native material and/or voided sections were present in the core-barrel. Descriptions of sample visual soil characteristics and constituent lithology were recorded. The soil samples were double bagged in quart-sized plastic bags, labeled, and preserved on ice in a cooler until laboratory submission. A total of 24 soil samples were collected at the property consistent with KDHE standard operating procedure (SOP) BER-03. Soil samples were submitted to the laboratory for analysis of radium-226 using EPA Method 9315. The samples were field screened for radium-226 with a Ludlum model 2241-2 digital survey meter with a Ludlum model 44-2, one-inch diameter by one-inch thick, sodium iodide T1 scintillator probe. Soil samples were submitted to the laboratory for analysis of RCRA total metals using EPA Methods 6010 or 7471, as appropriate. The soil samples were also field screened for metals using X-ray fluorescence (XRF) analysis with an Innov-X X-ray tube analyzer. Appropriate initial standardization and standards were analyzed consistent with EPA Method 6200. The soil samples were field screened for VOCs using a Perkin-Elmer 2020 photoionization detector (PID) while contained in the acetate liner

of the Macro-cores®. The PID was zeroed and calibrated to 98.5 parts per million with isobutylene on-site before field screening. One soil sample (sample location #5 from seven feet in depth) was obtained for VOC analysis using EPA Method 8260.

6.1.2.2 Ground Water Sampling Methods

Ground water samples were collected from four Geoprobe® locations on the property. A ground water sample was also collected from the upgradient background location. Ground water samples were obtained in vials and plastic bottles, labeled, and preserved on ice in a cooler until laboratory submission. The method of collecting the ground water samples followed KDHE SOP BER-01. Ground water samples were submitted to the laboratory for analysis of RCRA metals using EPA Method 6010 and 7470 (mercury), and radium-226 using EPA Method 903.0. Radium-226 ground water samples were field screened using the Ludlum meter. Ground water samples were analyzed for VOCs using EPA Method 8260. Table 5 describes EPA analytical methods, specific sample containers, preservation, and storage parameters for the various sample media.

6.2 Sampling Plan Deviations

Non-native material and/or void intervals were present in the core-barrel of the first Macro-core® at every probe location.

7.0 Assessment Results

7.1 Field Screening Results

A radiological surface soil survey of the former SPI property using the Ludlum meter was conducted on July 17 and 27, and August 1 and 6, 2007. The survey included areas adjacent to the building, the railroad right-of-way, and soil/grass/paved areas mainly north, south, and west of the building. Results of the survey indicated elevated readings for radiation at three localized areas that were subsequently mapped (see Figure 5). The highest surface reading recorded was 1,700 microroentgens per hour (µR/hr). This survey point is located in the northwest mapped area (see Figure 6) and subsequent samples were collected from this sample location designated #4. See Figures 6, 7, and 8 for radiological surface soil results and sampling locations for the three mapped areas.

All the soil and ground water samples collected were field screened for radium-226 using the Ludlum meter or the sample locations were screened in-situ prior to sampling. The ground water background location registered a maximum reading of 14 μ R/hr from a grassy surface. The upwind soil sample background locations registered a maximum reading of 15 μ R/hr from a grassy/soil surface. The highest reading screened from the property was 17,000 μ R/hr from a bagged subsurface soil sample at the #4 location from a depth of 2.75 feet.

All the soil samples were subjected to ex-situ XRF analysis. Appropriate initial standardization and standards were analyzed consistent with EPA Method 6200. Table 6 summarizes concentration levels for detections of lead and arsenic in milligrams per kilogram (mg/Kg).

7.2 Laboratory Results

Soil and ground water samples were evaluated by comparing laboratory- and field-based PID and XRF field screening data to the Tier 2 standards provided in Appendix A of the RSK Manual. Although the subject property is located in a commercial/industrial setting, UFA data were compared to RSK levels for both residential and non-residential scenarios.

KDHE RSK Tier 2 standards for contaminants identified in ground water default to EPA-promulgated primary and secondary Maximum Contaminant Levels (MCLs) established under the federal Safe Drinking Water Act for those contaminants in public drinking water supplies. Where primary or secondary MCLs have not been established, the ground water RSK goals are calculated using Risk Assessment Guidance for Superfund protocols and based on an excess lifetime cancer risk of 1 in 100,000 or a hazard index of 1.0, or if both risks are present, whichever yields the lower, more protective, dose.

Soil and ground water samples analyzed for radium were evaluated by comparing laboratory- and field-based (radiation field screening) data to the levels established by the joint NRC/EPA "Memorandum of Understanding" (MOU), and MCLs.

Appendix F provides the comprehensive laboratory reports.

7.2.1 Soil Results

Table 7 summarizes the concentration levels for soil samples analyzed for heavy metals sent to the Severn Trent Laboratories, Inc., (STL) in St. Louis, Missouri. Arsenic, cadmium, and lead were detected at levels exceeding residential soil pathway RSK standards. Sample #1 and # 5 collected at a depth interval of one to two feet had respective arsenic concentrations of 11.9 and 16.0 mg/Kg, exceeding the arsenic residential soil pathway RSK value of 11 mg/Kg. Sample #4 collected at two to four feet in depth, also exceed the RSK standard for arsenic. Note that the soil 3X background arsenic value for the respective depth exceeds the fore-mentioned analytical results (see Table 8). Also from sample #4, collected at 2.5 and 2.5 to 2.75 feet in depth, cadmium levels of 806 and 353 mg/Kg respectively exceed its residential soil pathway RSK value of 39 mg/Kg. From the same soil sample lead was detected at 477 and 1,340 mg/Kg respectively, exceeding the lead residential soil pathway RSK standard of 400 mg/Kg. Sample #5 from a depth of one to two feet also indicated an exceeding level of lead at 731 mg/Kg.

Soil samples sent to STL were also analyzed for radium-226 and results are expressed in units of picocuries per gram (pCi/g). Samples from four sampling locations at depths

ranging from zero to four feet below ground surface exceeded the EPA screening level for radium-226. See Table 7 and Figure 9 for the summary of results for radium-226. Sample #4 from 2.5 feet in depth had the highest concentration of radium-226 indicated at 81,800 pCi/g. The EPA/NRC MOU screening level for radium-226 in both residential and non-residential soils is 5 pCi/g plus background (which for this property is approximately 1.62 pCi/g), hence the property background is 6.61 pCi/g. Table 8 summarizes the results of metals and radium-226 from background samples collected at various depths.

From the #5 soil VOC sample (from seven feet in depth) only naphthalene and 1,2,4-trimethylbenzene was detected at concentrations estimated to be less than the reporting level for that contaminant. Table 9 summarizes the soil VOC analytical data.

7.2.2 Ground Water Results

Ground water samples were collected and filtered from five sampling locations (including the background location). Radium-226 was present in trace amounts or below background in ground water from all but one of the sample locations, including the background, with the detections well below the EPA screening level for radium-226 of 5 pCi/L (plus background, which for this property is approximately 0.45 pCi/L) and also below the federal MCL value for combined radium-226 plus -228 of 5 pCi/L. Sample #5, the exception, indicated a radium-226 level of 156 pCi/L, well over the federal standards.

Laboratory samples from ground water indicated concentrations well below respective federal MCL values for barium, DCE, PCE, toluene, 1,1,1-trichloroethane (TCA), and zinc. TCE was indicated in all samples in concentrations exceeding its federal MCL value. In sample #5 TCE levels were 0.013 mg/L, exceeding the MCL of 0.005 mg/L. Figure 10 shows ground water VOC results and Table 10 provides a summary of the ground water analytical data.

7.3 Quality Assurance / Quality Control Results

QA/QC samples included two duplicate samples and two trip blanks submitted for laboratory analysis. The duplicate results for detected constituents are within twenty percent of original results. The trip blank sample results give no indication of compromised data quality or cross-contamination.

Before XRF readings were recorded, an initial standardization procedure was run. The National Institute of Standards and Technology (NIST) high standard was analyzed twice during each procedure. The calculated percent difference for lead was less than 3% and arsenic was less than 5%. These are within acceptable limits (20%).

Laboratory detection limits were at or below relevant soil and ground water RSK values for the contaminants of concern specified in the KDHE work scope, and laboratory quality control information indicate accurate and precise laboratory data was generated for this UFA.

7.3.1 Comparison of Field and Laboratory Analysis

Soil samples from 24 discrete locations or depth intervals were field screened for heavy metals with XRF analysis with 16 samples being analyzed for heavy metals by various laboratories. Comparison of the field versus laboratory data indicated the XRF data tended to indicate higher values than laboratory analytical readings for lead and conversely lower for arsenic. The XRF data were statistically correlated to the analytical laboratory data. Correlation coefficients for arsenic were not used to calculate r^2 values due to the number of non-detections with the arsenic XRF data. Table 6 gives a summary of the comparison of field screened and laboratory data for lead and arsenic. The XRF data are thus at an apparent quantitative level for lead and qualitative for arsenic.

8.0 Summary and Conclusions

8.1 Summary

KDHE performed the UFA in conformance with the scope and limitations of ASTM Practice E 1527-05 on the former SPI property located at 650 East Gilbert Street in Wichita, Kansas. Property investigated also included locations adjacent to and north of the SPI property.

This UFA revealed evidence of the following *Recognized Environmental Conditions* (REC) in connection with the property:

- Concentrations of radium-226 are elevated in surface and subsurface soil collected and screened from many areas on the property.
- Arsenic, cadmium, and/or lead are present in different combinations in the soil with concentrations exceeding their respective residential RSK standards at sample locations Bg#1, #1, #4, and #5. However, the arsenic concentrations are less than the 3X background arsenic value.
- Ground water collected from sample location #5 indicated radium-226 levels exceeding federal standards.
- TCE was detected in all ground water samples and in concentrations exceeding its MCL concentration.

The UFA has revealed evidence of the following *Historical Recognized Environmental Conditions* (HREC) in connection with the property:

 The repair, handling, and storage of radium dial instruments is known to have occurred at this location in the 1950's and 1960's, based on documents KDHE reviewed.

On August 16, 2007, KDHE collected surface (0 to 6 inch) soil samples by stainless steel trowel at the two background locations south of the property and from two locations on-site (#1 and #4). On September 5, 2007, KDHE advanced three Geoprobe® direct-push borings on the property and a probe at the background location north of the property, for the purpose of collecting ground water samples and soil samples from Macro-cores®. Also, a surface soil sample was collected with a stainless steel trowel from sample location #3. A total of 16 soil samples were obtained from four Macro-cores® per the four sample locations. Ground water samples were collected from all four of the Geoprobe® locations. On December 5, 2007, KDHE advanced another Geoprobe® direct-push boring at sample location #5. A total of four soil samples were obtained from two Macro-cores®. A ground water sample was collected from sample location #5. Due to non-conclusive ground water analytical results because of high reporting limits, the four previous Geoprobe® locations were offset and ground water samples were collected for analysis with another laboratory.

All the ground water samples were analyzed for radium-226, RCRA metals, and VOCs. The ground water samples analyzed for radium-226 and RCRA metals were field filtered prior to submittal to the laboratory for analysis. All of the soil samples were field screened or analyzed for radium-226 and the eight RCRA metals. Soil was field screened for metals (ex-situ) using a XRF and for radium-226 using a Ludlum meter. Five ground water and eight soil samples were analyzed by STL for radium-226. Pace Analytical Services, Inc., (Pace) analyzed five soil samples for radium-226. One soil sample was analyzed for VOCs by STL. Eight soil samples were analyzed by STL, with eight soil samples analyzed by KDHE's Division of Health and Environment Laboratories (DHEL), for RCRA metals. DHEL analyzed five ground water samples for RCRA metals and VOCs. A total of 15 ground water samples, 17 soil samples, and two trip blanks were collected and submitted for laboratory analysis.

The highest field-measured surficial background value for radium-226 at the SPI property was 15 μ R/hr. Radium-226 was detected during the surficial soil radiation survey at a maximum of 1,700 μ R/hr at sample location #4. Laboratory soil samples collected from this location exceeded the EPA screening level for radium-226 at two depths. The sample from 2.5 feet indicated 81,800 pCi/g and 70,900 pCi/g from 2.5 to 2.75 feet. The EPA/NRC-MOU screening level for radium-226 is 5 pCi/g plus background. For this property the EPA/NRC-MOU screening level is approximately 6.62 pCi/g for surficial soils.

All RCRA metals were detected in the soil samples collected at the property. Of the eight, arsenic, cadmium, and lead were present in levels above their respective residential soil pathway RSK goals. The soil 3X background arsenic value does exceed the arsenic results from all sample locations. The maximum level of arsenic was indicated from sample location #5 (from 1 to 2 feet in depth) at 16.0 mg/Kg. The maximum level of

cadmium was indicated at 806 mg/Kg from sample location #4 (2.5 feet in depth). Sample location #4 had the maximum lead level indicated from soil collected at 2.5 to 2.75 feet in depth at 1,340 mg/Kg.

Ground water collected from sample location #5 indicated radium-226 levels of 156 pCi/L. The EPA/NRC-MOU screening level for radium-226 is 5 pCi/L plus background. For this property the EPA/NRC-MOU screening level is approximately 5.45 pCi/L for ground water.

Various VOCs were detected in ground water collected from the property. TCE was indicated in all samples exceeding its federal MCL value (see Table 10).

8.2 Conclusions

The sampling objective was to evaluate environmental conditions by collecting data for the contaminants of concern including radium-226, RCRA metals, and VOCs. Intrusive sampling and laboratory analysis was conducted under specific quality control and data validation guidelines.

Results of the UFA indicate that soils present at the SPI property are contaminated with radium-226, metals, and VOC's. Apparently in the 1950's and 1960's the southern two thirds of the current property was the location of a large building complex (see figure 3). Scanning and subsequent sampling of the scanned areas of elevated radiation indicates radium-226 contamination is located around the perimeter of the former large building complex. Soil samples from the two corner locations (#1 and #4) and the #5 location also exceed their respective residential RSK standards for various combinations of arsenic and lead. The arsenic levels indicated, however, are below the site-specific three times (3X) background concentration. Cadmium levels in soil from location #4 far exceed its respective residential RSK standard.

Ground water collected from location #5 had levels of radium-226 that exceeded federal standards. No metals were detected in ground water above their respective RSK standards. Multiple VOCs were detected in ground water collected from the property, but the property is situated within the boundaries of the GM site area where VOC concentrations are known to be elevated. TCE was indicated in all samples in concentrations exceeding its federal MCL value. The TCE levels detected from the background, #1, #2, #4, and #5 ground water samples (0.0087, 0.010, 0.0089, 0.012, and 0.013 mg/L respectively) exceeded the primary MCL for TCE of 0.005 mg/L. VOC contamination in ground water is being addressed by the City of Wichita under a KDHE consent agreement for the GM area.

Significant levels of radium potentially attributable to radium dial repair operations appear to be present at the SPI, property in excess of EPA/NRC screening values for soil and ground water. Arsenic, cadmium, and lead were also detected in soil above residential RSK levels. KDHE will attempt to identify potentially responsible parties

(PRPs) to participate in a state cleanup program. The property may qualify for future CERCLA remedial and removal response if a viable PRP is not identified.

9.0 References

- 1. American Society for Testing and Materials (ASTM). 2005. Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. ASTM Standard E 1527-05. ASTM, West Conshohocken, Pennsylvania.
- 2. ASTM. 2005. ASTM Standards Related to the Phase II Environmental Site Assessment Process Version 2.0.
- 3. California Environmental Protection Agency (CEPA). 2006. Public Health Goal for Radium-226 and -228 in Drinking Water. March, 2006. CEPA/Office of Environmental Health Hazard Assessment, Sacramento, California.
- 4. Federal Register. 2005. Part III Environmental Protection Agency. 40 CRF Part 312. Standards and Practices for All Appropriate Inquiries: Final Rule. November 1, 2005.
- 5. Environmental Data Resources (EDR), Inc. 2007. The EDR Radius Map with GeoCheck, 650 East Gilbert Street, Wichita, Kansas, 67211. October 2, 2007.
- 6. Fetter, C W. 1993. Contaminant Hydrogeology. Maxwell Publishing Company, New York, New York.
- 7. Kansas Department of Health and Environment (KDHE). 2007. KDHE/Bureau of Air and Radiation (BAR), File. KDHE/BAR.
- 8. KDHE. 2007. KDHE Bureau of Waste Management (BWM), Hazardous Waste Generator File. KDHE/BWM.
- 9. KDHE. 2006. KDHE Field Sampling Plan. August 13, 2007. KDHE/BER, Topeka, Kansas.
- 10. KDHE. 2006. KDHE BER, Quality Assurance Project Plan. KDHE/BER.
- 11. KDHE. 2006. KDHE BER, Work Scope for Radium Dial Shops. KDHE/BER.
- 12. KDHE. 2003. Hazardous Waste Generator Handbook. September, 2003. KDHE/BWM.
- 13. KDHE. 2008. Historical Activity Photography 1950 Dataset of Wichita, Kansas. February, 2008. KDHE/BER.
- 14. KDHE. 2003. Risk-based Standards for Kansas RSK Manual 3rd Version. KDHE/BER.

- 15. Kansas Geological Survey (KGS). 2004. Water Well Completion Records (WWC5) Database. KGS, Lawrence, Kansas. http://magellan.kgs.ukans.edu/WaterWell/index.html
- 16. KGS. 1978. Guidebook for Society of Economic Paleontologists and Mineralogists, Field Guide to Upper Pennsylvanian Cyclothemic Limestone Facies in Eastern Kansas. Guidebook Series 2, KGS.
- 17. KGS. 1965. Geohydrology of Sedgwick County, Kansas. KGS Bulletin 176. KGS, Lawrence, Kansas.
- 18. Oak Ridge Associated Universities. 1999 (last update 2005). Radioluminescent Paint. http://www.orau.org/ptp/collection/radioluminescent/radioluminescentinfo.htm
- 19. Polk Directories for Wichita, Kansas. Available at the Kansas State Historical Research Center, Topeka, Kansas.
- 20. Spectrum Chemical Fact Sheet. 2006. cis 1,2-Dichloroethylene. http://www.speclab.com/compound/c156592.htm
- 21. Spectrum Chemical Fact Sheet. 2006. Tetrachloroethylene. http://www.speclab.com/compound/c127184.htm
- 22. Spectrum Chemical Fact Sheet. 2006. Toluene. http://www.speclab.com/compound/c108883.htm
- 23. Spectrum Chemical Fact Sheet. 2006. 1,1,1-Trichloroethane. http://www.speclab.com/compound/c71556.htm
- 24. Spectrum Chemical Fact Sheet. 2006. Trichloroethylene. http://www.speclab.com/compound/c79016.htm
- 25. State of Kansas/Sanborn, 2002, Orthophotos: State of Kansas /Sanborn Colorado, Topeka, Kansas.
- 26. United States Department of Agriculture (USDA). 1979. Soil Survey of Sedgwick County, Kansas. USDA, Soil Conservation Service, Washington, District of Columbia.
- 27. United States Environmental Protection Agency (EPA). 1995. Profile of the Fabricated Metal Products Industry. EPA Sector Notebook 310-R-95-007.
- 28. United States Geologic Survey (USGS). 1961 (photo-revised 1970). 7.5 Minute Series Topographic Map, Wichita East, Kansas quadrangle. USGS, Reston, Virginia.

- 29. USGS. 1989. Water Resources of Sedgwick County, Kansas. Water Resource Investigations Report 88-4225.
- 30. United States Department of Health, Education and Welfare (USDHE&W). 1969. Evaluation of Radium Contamination in Aircraft Instrument Repair Facilities. Public Health Service Publication 999-RH-36.
- 31. United States Department of Health and Human Services (USDH&HS). 1999. Toxicological Profile for Arsenic.
- 32. United States Department of Health and Human Services (USDH&HS). 1999. Toxicological Profile for Cadmium.
- 33. United States Department of Health and Human Services (USDH&HS). 1999. Toxicological Profile for Lead.
- 34. United States Department of Health and Human Services (USDH&HS). 1990. Toxicological Profile for Radium.

10.0 Appendices

A.	Tables & Figures
В.	EDR Report
C.	KGS Well Data
D.	Field Notes
E.	Photographic Documentation
F.	Analytical Data

Appendix A

Tables & Figures

TABLE 1 Federal Databases

Database	Description	Radius (miles)	Facilities
NPL	The National Priorities List (NPL) is the United States Environmental Protection Agency (EPA) database of uncontrolled or abandoned hazardous waste facilities that have been listed for priority remedial actions under the Superfund Program.	1.125	0
CERCLIS/NFRAP	The CERCLIS database is a compilation of facilities the EPA has investigated or is currently investigating for a release or threatened release of hazardous substances pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980. NFRAP (No Further Remedial Action Planned) refers to facilities that have been removed and archived from its inventory of CERCLA sites.	0.625	1
RCRA CORRACTS/TSD	The EPA maintains a database of Resource Conservation and Recovery Act (RCRA) facilities associated with treatment, storage, and disposal (TSD) of hazardous materials that are undergoing "corrective action." A "corrective action" order is issued when there has been a release of hazardous waste or constituents into the environment from a RCRA facility.	1.125	0
RCRA Non- CORRACTS/TSD	The RCRA Non-CORRACTS/TSD database is a compilation by the EPA of facilities reporting the storage, transportation, treatment, or disposal of hazardous waste. Unlike the RCRA CORRACTS/TSD database, the RCRA Non-CORRACTS/TSD database does not include RCRA facilities where corrective action is required.	0.625	0
RCRA Generators	The RCRA Generators database, maintained by the EPA, lists facilities that generate hazardous waste as part of their normal business practices. Generators are listed as either large, small, or conditionally exempt. Large quantity generators (LQG) produce at least 100 kg/month of non-acutely hazardous waste (NAHW) or 1 kg/month of acutely hazardous waste. Small quantity generators (SQG) produce 100-1000 kg/month of NAHW. Conditionally exempt small quantity generators (CESQG) are those that generate less than 100 kg/month of NAHW.	0.375	0 (LQG) 11 (SQG)
ERNS	The Emergency Response Notification System (ERNS) is a listing compiled by the EPA on reported releases of petroleum and hazardous substances to the air, soil, and/or water.	0.125	0

TABLE 2 State Databases

Database	Description	Radius (miles)	Facilities
SHWS	The Kansas Department of Health and Environment (KDHE) maintains a database of State Hazardous Waste Sites (SHWS) records that are the states' equivalent to CERCLIS. The CERCLIS database is a compilation of facilities the EPA has investigated for a release or threatened release of hazardous substances pursuant to CERCLA. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent to Superfund), and potentially responsible party funded sites, are identified.	1.125	20
SWF	The KDHE maintains a database of Solid Waste Facilities (SWF) located within Kansas. The database information may include the facility name, class, operation type, area, estimated operational life, and owner.	0.625	1
LUST	The KDHE provides a computer generated database of the Leaking Underground Storage Tanks (LUST) in the State of Kansas.	0.625	27
UST	The KDHE provides a database of the registered Underground Storage Tanks (UST) in the State of Kansas. Information may include the owner and location of the UST.	0.375	7
VCP	The KDHE maintains a database of sites including in the Identified Sites List (ISL) that are identified as Voluntary Cleanup sites (VCP).	0.625	0
ISL	The KDHE maintains an ISL database that includes KDHE Bureau of Environmental Remediation regulated sites with actual or perceived environmental contamination. With the exception of storage tank sites, the ISL lists all KDHE-BER regulated sites with historical or ongoing activities being conducted under the KDHE Voluntary Cleanup, Brownfields, enforcement-based, Drycleaner, and other relevant State programs. ISL-listed sites may therefore include sites also listed in the SHWS and VCP databases.	0.625	22

Project Personnel and Organization Project Position / Staff / Responsibilities

Project Manager & Site Safety Officer	Robert Benne	Overall project organization and management, development of Field Sampling Plan and QAPP, quality control, data evaluation, field support, and report development. Site safety and Health and Safety Plan (HASP) implementation.
Geoprobe® Operator	Mike LaBuda	Geoprobe® operation, maintenance, field support.
Field Support	Farrell Dallen Jessica Walker	Sample collection and screening.
QA Data Validator	Randy Brown	Quality assurance and data validation.

Sample Location Rationale and Sampling Parameters

Location / Description / Sample Depth(s) in Feet bgs / Rationale / Laboratory Analyses

SPI - Background (Bg 1 – 2)	Surface soil	0-0.5 feet bgs ₁	Upgradient (upwind) location	RCRA metals ₂ , VOC ₃ , Ra-226 ₄
SPI – 5	Ground water₅ & subsurface soil	10-20 feet bgs ₁ & 0-12 feet bgs ₁	Unbiased sites	RCRA metals ₂ , VOC ₃ , Ra-226 ₄
SPI – 1 - 5	Subsurface soil	0-0.5 feet bgs ₁ & 0-8 feet bgs ₁	Biased sites	RCRA metals ₂ , VOC ₃ , Ra-226 ₄
SPI - 4	Ground water₅	10-25 feet bgs ₁	Downgradient well	RCRA metals, VOC, Ra-226
SPI - Background	Ground water ₅ & subsurface soil	10-25 feet bgs ₁ & 0-8 feet bgs ₁	Upgradient (ground water flow) well	RCRA metals, VOC, Ra-226

Notes:

SPI = Standard Products, Inc.

Ra-226 = Radium-226

Subscript numbers:

- 1 bgs = below ground surface 2 Sample subject to metals analysis if XRF screening suggests impacts
- 3 Sample subject to VOC analysis if PID screening suggests impacts
- 4 Sample subject to Ra-226 analysis if radioactivity screening suggests impacts
- 5 Estimated depth based on generalized hydrogeologic conditions

Analytical Methods and Sample Storage
Sample Media / Analysis / EPA Analytical Method / Container-Storage / Preservative / Holding Time

Soil	RCRA Metals	6010	1 x 8 oz. glass jar, cool to 4° Celsius	none	6 months
Soil	Mercury	7471	1 x 8 oz. glass jar, cool to 4° Celsius	none	28 days
Soil	Radium- 226	9315	1 x 8 oz. glass jar; cool to 4° Celsius	none	6 months
Soil	VOCs	8260	1 x 4 oz. glass jar; cool to 4º Celsius	none	14 days
Water	RCRA Metals	6010	Field filter through 0.45 micron filter; 1 x 250 ml plastic – cool to 4° Celsius	HNO ₃	6 months
Water	Mercury	7471	Field filter through 0.45 micron filter; 1 x 250 ml plastic – cool to 4° Celsius	HNO ₃	28 days
Water	Radium- 226	903	Field filter through 0.45 micron filter; 1 x 1000 ml plastic – cool to 4° Celsius	HNO ₃	6 months
Water	VOCs	8260	2 x 40ml glass vials - cool to 4° Celsius	HCI	14 days
XRF soils	RCRA Metals	6200	Ziplock® plastic bag – cool to 4° Celsius	none	6 months

 TABLE 6

 Comparison of Field Screened to Analytical Laboratory Data for Standard Products, Inc.

SOIL		Pb=Lead in mg/Kg.		Pb lab.	As XRF	As=Arsenic in mg/Kg.		
SAMPLE ID	Pb XRF	Pb max. Pb ave.				As max.	As lab.	
Bg-1 0-6"	122	1			<16			
Bg-1 0-6"	117	123	120.67	490	<17	0		10
Bg-1 0-6"	123				<16			-
Bg-2 0-6"	197				<20			
Bg-2 0-6"	197	197	194.67	180	<20	0		<5.0
Bg-2 0-6"	190				<20			
Bkgd 0-6"	159				<18			
Bkgd 0-6"	169	206	178.00	180	<18	0		8.4
Bkgd 0-6"	206				<20			
Bkgd 0-2'	186				<21		BILLIA	
Bkgd 0-2'	218	218	164.67	110	<22	0		9.3
Bkgd 0-2'	90			Marie T	<15			
Bkgd 2-4'	<15				<10			
Bkgd 2-4'	23	23	23.00	9.1	<11	13		8.5
Bkgd 2-4'	<15				13			
Bkgd 4-6'	<14				<10	A Francisco		1 - 16-
Bkgd 4-6'	29	29	26.50	5.4	<11	0		6.8
Bkgd 4-6'	24				<11			
Bkgd 6-8'	<14				11			
Bkgd 6-8'	<18	0			<12	11		
Bkgd 6-8'	<14				<9			
#1 0-6"	94				20			
#1 0-6"	97	97	91.00	65	<15	20		5.9
#1 0-6"	82				<14			
#1 1-2'	463			100	<31			
#1 1-2'	620	620	413.00	458	44	44		11.9
#1 1-2'	156				<19			
#1 2-4'	137				<17			
#1 2-4'	191	191	169.00		<21	0		
#1 2-4'	179				<19			
#1 5-6'	26				<11			
#1 5-6'	30	103	53.00		<11	0		
#1 5-6'	103				<16		A STATE OF	
#1 6-8'	<13				<9			
#1 6-8'	17	17	17.00	THE STATE	<9	0		1
#1 6-8'	<13		FYTT		<9			
#2 1.75-2.25	<91				<54			
#2 1.75-2.25	121	121	80.00	157	<18	0		6.4
#2 1.75-2.25'	39				<13			

 TABLE 6

 Comparison of Field Screened to Analytical Laboratory Data for Standard Products, Inc.

SOIL	The same	Pb=Lead	in mg/Kg.			As=Arsen	ic in mg/K	g.
SAMPLE ID	Pb XRF	Pb max.	Pb ave.	Pb lab.	As XRF	As max.	As ave.	As lab.
#2 2.25-4'	<14				<10			
#2 2.25-4'	19	19	18.00		<13	0		
#2 2.25-4'	17				<9			
#2 4-6'	19				<11	Manager Late		
#2 4-6'	100	100	48.33		<15	0		
#2 4-6'	26				<12			
#2 6-8'	18				<10			
#2 6-8'	15	18	16.50		<9	0		
#2 6-8'	<14				<9			
#3 0-6"	119				<18			
#3 0-6"	107	119	110.33	113	<18	0		3.8
#3 0-6"	105				<17			
#4 0-6"	163				<18			
#4 0-6"	122	163	137.00	91	<17	19		<5.0
#4 0-6"	126				19			
#4 2.5'	579				<38			
#4 2.5'	505	579	454.00	477	43	43		4.5
#4 2.5'	278				<26			
#4 2.5-3'	471				38			
#4 2.5-3'	657	1025	717.67	1340	<42	86		15.4
#4 2.5-3'	1025				86			
#4 3-4'	16				<10			
#4 3-4'	160	160	63.67	185	26	26		11
#4 3-4'	15				<10			
#4 4-6'	87				16			
#4 4-6'	119	119	103.00		<17	16		
#4 4-6'	<15				<10			
#4 6-8'	<67				<42	The second		
#4 6-8'	<16	0			<10	0		
#4 6-8'	<15				<9			
#5 0-6"	173				<15			
#5 0-6"	192	192	147.00	175	<16	0	11-1-1-1-1	2.9
#5 0-6"	76			11.4	<12			
#5 1-2'	731				<30			
#5 1-2'	519	731	622.33	731	29	62		16
#5 1-2'	617				62			
#5 2-4'	13				<8	THE STATE OF		
#5 2-4'	19	19	16.33		<8	0		11.11
#5 2-4'	17				<8			
#5 5-6'	19				<8			
#5 5-6'	25	38	27.33		<8	0		
#5 5-6'	38				<9			
#5 6-8'	19				<8			
#5 6-8'	17	19	17.33		<7	0		1 1 1
#5 6-8'	16		11.00		<7			
	10			1	1			

Bkgd or BG = Background " = Inches ' = Feet
Red text = Exceeds Residential Soil Pathway RSK
NA = Not Applicable

Comparison of Field Screened to Analytical Laboratory Data for Standard Products, Inc.

Duplicate

Correlation Coefficients	Maximu	m/Lab. 0.92	Ave./Lab. 0.90		Maximum/Lab. Ave./Lab. 0.66 NA				
#5 1-2'	582				<29				
#5 1-2' #5 1-2' #5 1-2'	310	582	355.33	731	29	29		16	
#5 1-2'	174				25				

TABLE 7

Soil Data Summary Table for Laboratory Analyzed Samples (Metals) Standard Products, Inc.

Element (RSK #)	3X Background 0-0.5 feet(^)	Sample # 1 0-0.5 feet(^)	Sample # 1 1-2 feet(*)	Sample # 2 0 - 2 foot(*)	Sample # 3 0-0.5 feet(*)	Sample #4 0-0.5 feet(^)	Sample #4 2.5 feet(*)	Sample #4 2.5-2.75 feet(*)	Sample #4 3-4 feet(*)	Sample #5 0-0.5 feet(*)	Sample #5 1-2 feet(*)
Arsenic (11)	25.2	5.9	11.9	6.4	3.8	<5.0 _B	4.5 _B	15.4	11	2.9	16.0
Barium (5,500)	720	99	154	113	82.2	96	75.2	290	176	96.0	228
Cadmium (39)	4.8	1.8	7.1	1.0	1.1	1.3	806	353	4.6	1.6	9.2
Chromium (390)	84	24	16.1	8.6	10.5	11	21.0		12.2	10.7	20.2
Copper (2,900)	261	56	NA	NA	NA	64	NA	NA	NA	NA	NA
Lead (400)	540	65	458	157	113	91	477	1,340	185	175	731
Mercury (2)	0.195	<0.050 _B	0.122	0.0732	NA	0.071	0.149	0.202	NA	0.0967	0.278
Radium-226 (6.62*)	4.86(¤)	2.09(¤)	3,020	419	3.34	2.16(¤)	81,800	70,900	366	136	1,150
Selenium (3,600)	<15.0	<5.0 ₈	ND	ND	ND	<5.0 _B	ND	1.4 _B	1.1 _B	ND	ND
Silver (390)	<3.0	<1.0 _B	ND	ND	ND	<1.0 _B	ND	ND	ND	ND	18.0
Zinc (23,000)	870	220	NA	NA	NA	170	NA	NA	NA	NA	NA

Source: Division of Health and Environmental Laboratories (^), Test America Laboratories, Inc. (*), and Pace Analytical Services, Inc. (¤)

All units in milligrams per kilogram (mg/Kg) except Radium-226 = picocuries per gram (pCi/g)
(RSK #) = Tier 2 KDHE Risk-Based standards provided in Appendix A of the Risk-Based Standards for Kansas Manual (3rd Version): Soil pathway residential RSK standard.

(RSK #*) = EPA screening level for the site.

Bold Red text = Exceeds RSK or EPA standard.

< = less than

B = result is less than reporting limit

NA = not analyzed

ND = not detected

TABLE 8

Background Soil Sample Results Standard Products, Inc.

Element	Bg #1 0- 0.5 foot depth (mg/Kg)	Bg #2 0- 0.5 foot depth (mg/Kg)	Background 0- 0.5 foot depth (mg/Kg)	3 X Background 0-0.5 foot (mg/Kg)	Back- ground 0- 2 foot depth (mg/Kg)	Back- ground 2- 4 foot depth (mg/Kg)	Back- ground 4- 6 foot depth (mg/Kg)	Residential RSK (mg/Kg)	Non- residential RSK (mg/Kg)
Arsenic (11)	10	<5.0	8.4	25.2	9.3	8.5	6.8	11	38
Barium (5,500)	140	110	240	720	210	180	150	5,500	140,000
Cadmium (39)	1.6	7.6	1.6	4.8	1.2	<1.0	<1.0	39	1,000
Chromium (390)	21	23	28	84	25	28	21	390	4,000
Copper (2,900)	39	52	87	261	47	20	11	2,900	76,000
Lead (400)	490	180	180	540	110	9.1	5.4	400	1,000
Mercury (2)	<0.050	<0.050	0.065	0.195	NA	NA	NA	2	20
Radium-226 (*6.62)	1.49(¤)	1.32(n)	1.62(¤)	4.86	2.2936	3.3457	2.9208	* 5 plus background	5 plus background
Selenium (3,600)	<5.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	390	10,000
Silver (390)	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	390	10,000
Zinc (23,000)	190	270	290	870	180	70	46	23,000	610,000

Source: Division of Health and Environmental Laboratories and Pace Analytical Services, Inc. (p)

All numerical values in milligrams per kilogram (mg/Kg) except Radium-226 = picocuries per Gram (pCi/g)
RSK = Tier 2 KDHE Risk-Based standards provided in Appendix A of the Risk-Based Standards for Kansas Manual (3rd Version): Soil pathway standard.
(* RSK #) = EPA screening level for the site (5 + Background) = 6.62 pCi/g.
Bold Red text = Exceeds RSK or EPA standard.

NA = not analyzed

Soil Sample Data Summary Table for Volatile Organic Compounds Standard Products, Inc.

Compound	# 5 (from 7')	Residential Soil Pathway RSK	Residential Soil to Ground Water Protection Pathway RSK	Non-residential Soil Pathway RSK
Napthalene	0.0058 _{B,J}	104 _n	1.05	325 _n
1,2,4 – Trimethylbenzene	0.00063 _{B,J}	36.5 _n	0.78	2.6

Source: Severn Trent Laboratories, Inc.

All numerical values in milligrams per kilogram (mg/Kg)
(RSK #) = Tier 2 KDHE Risk-Based standards provided in Appendix A of the Risk-based Standards for Kansas Manual (3rd Version): Residential and Non-residential Soil Pathway or Soil to Groundwater Protection Pathway RSK standards.

Red, Purple, or Green text = Exceeds RSK standards.

B = method blank contamination

J = result is < than stated reporting limit

TABLE 10

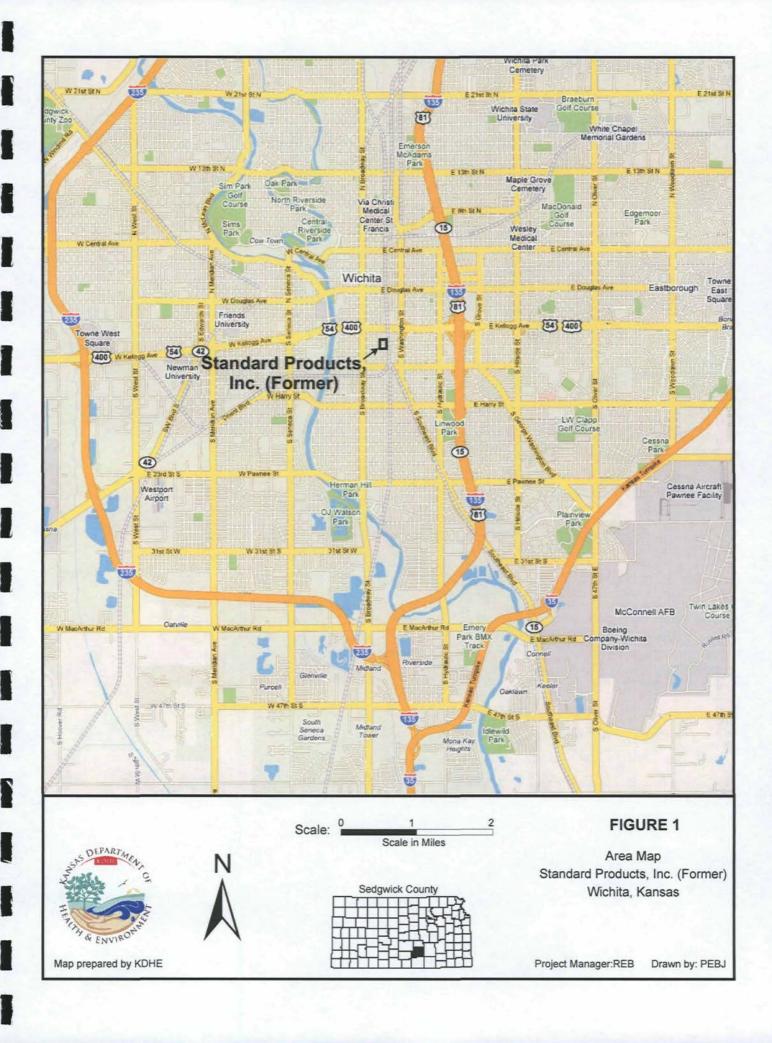
Ground Water Data Summary Table for Laboratory Analyzed Samples Standard Products, Inc.

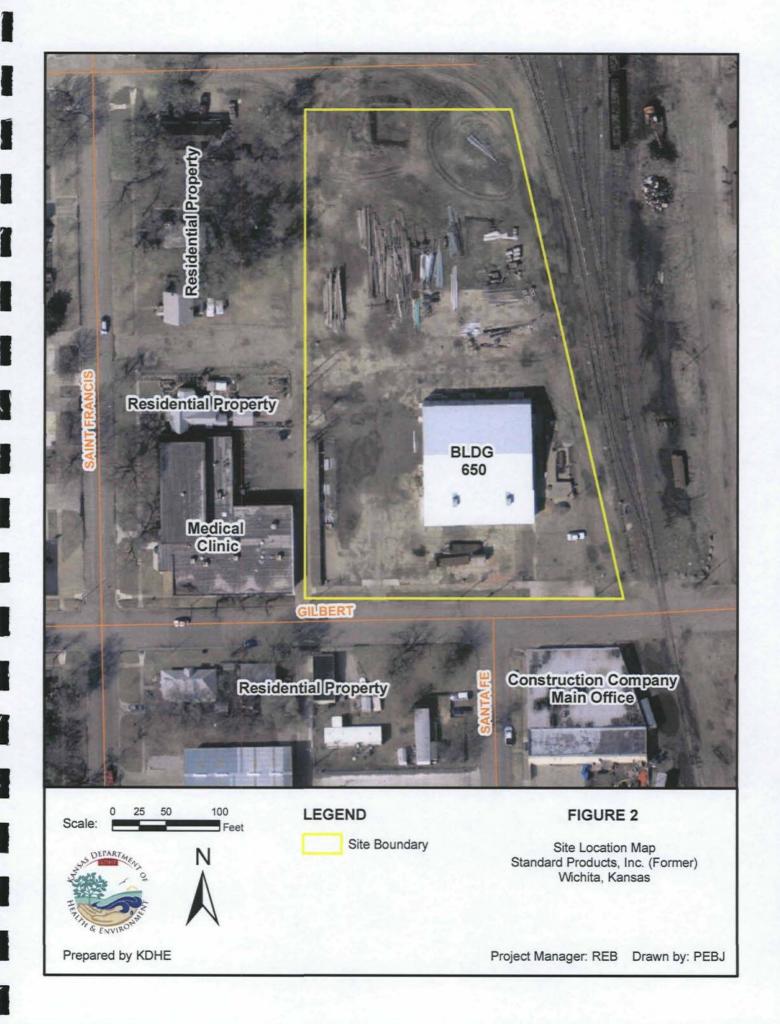
Element or Compound	Background X 3	#1	#2	#4	#5	Residential RSK	Non-residential RSK
Barium	0.098 / 0.294	0.13	0.086	0.074	0.11	2.0 _m	2.0 _m
cis 1,2 – Dichloroethylene (DCE)	0.0086	0.0072	0.015	0.013	0.0096	0.07	0.07
Radium-226	0.45」(*) / 1.35	0.40 _J (*)	0.42 _J (*)	0.45 _J (*)	156 (*)	* 5.45/5.0 _m	* 5.45/5.0 _m
Tetrachloroethylene (PCE)	0.0019	0.0011	0.0016	0.0039	0.0039	0.005 _m	0.005 _m
Toluene	<0.00050	<0.00050	<0.00050	<0.00050	0.001	1 _m	1 _m
1,1,1 – Trichloroethane (TCA)	<0.00050	0.0035	<0.00050	<0.00050	0.00075	0.2 _m	0.2 _m
Trichloroethylene (TCE)	0.0087	0.010	0.0089	0.012	0.013	0.005 _m	0.005 _m
Zinc	0.013 / 0.039	0.011	0.032	0.027	0.047	5 _M	5 _M

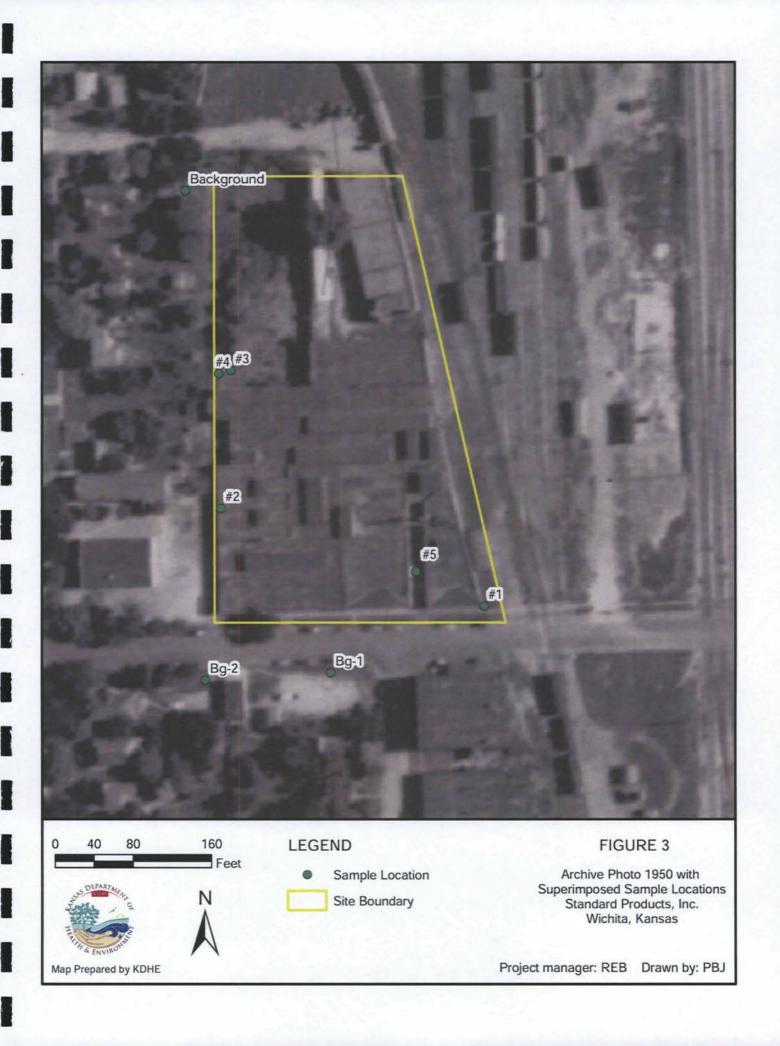
Source: KDHE Division of Health and Environmental Laboratories (all except Radium-226), Test America Laboratories, Inc. (* - Radium-226)

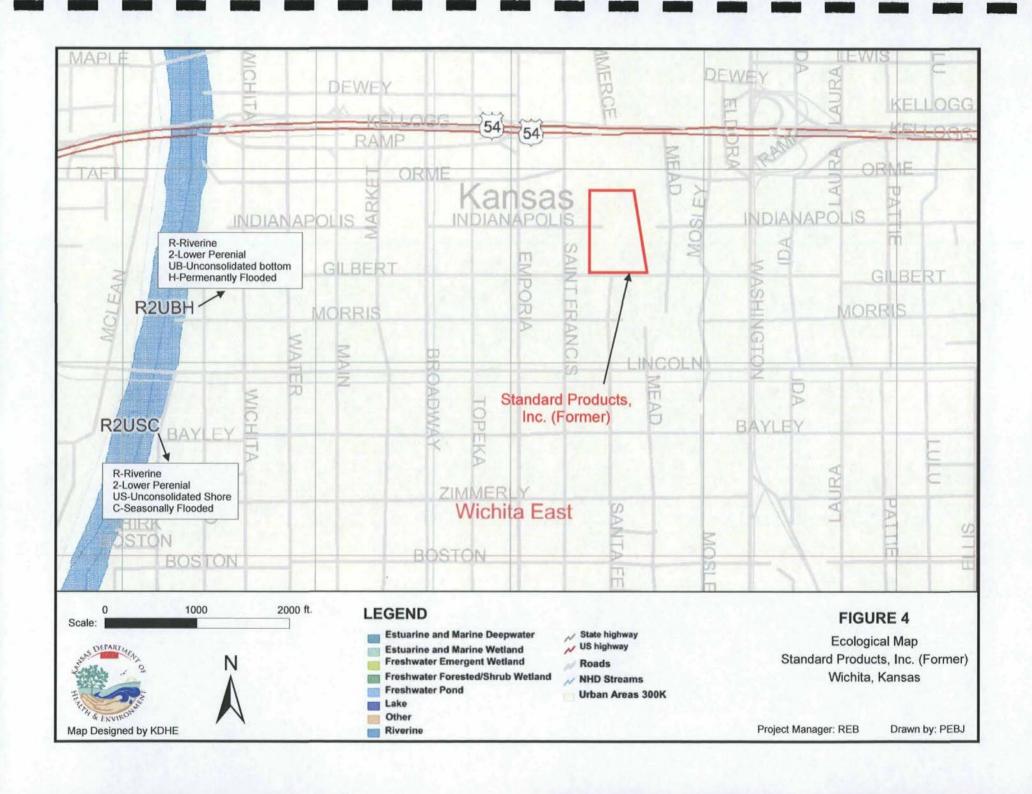
All numerical values in milligrams per liter (mg/L) except Radium-226 = picocuries per Liter (pCi/L) (RSK #) = Tier 2 KDHE Risk-Based standards provided in Appendix A of the Risk-based Standards for Kansas Manual (3rd Version): Groundwater Pathway RSK standard.

(* RSK #) = EPA screening level for the site (5 + Background) = 5.45 pCi/g.

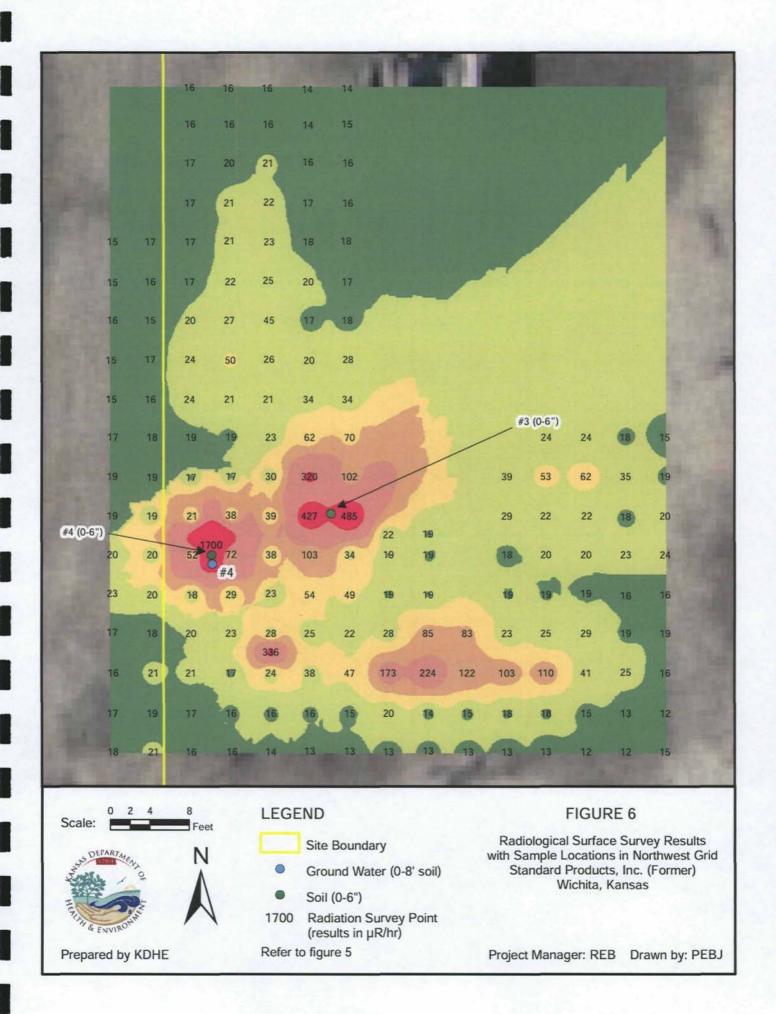

Red or Purple text = Exceeds RSK or EPA/Federal standards.

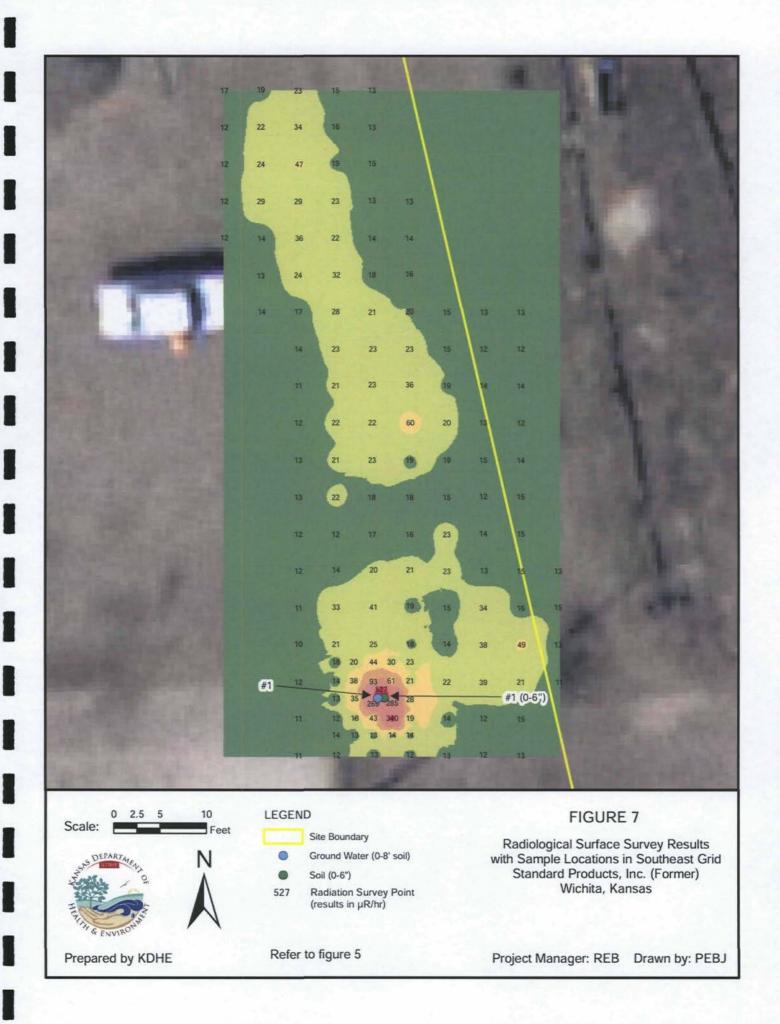

M = Secondary MCL

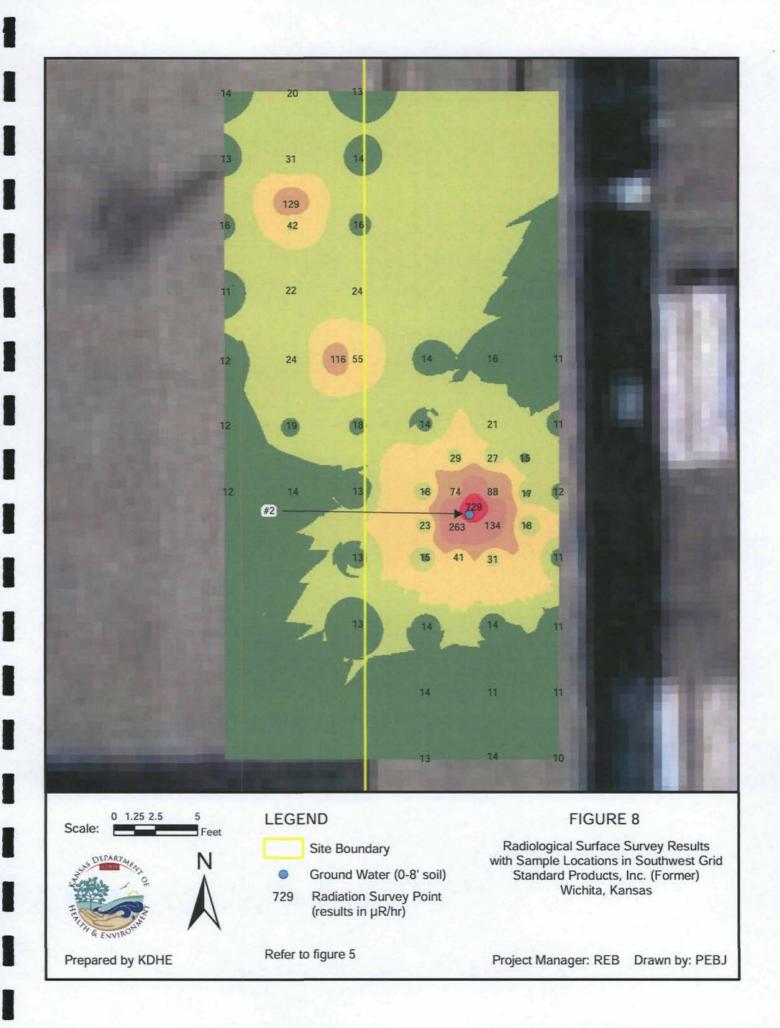

m = Primary MCL


< = less than


J = result is > than sample detection limit but < than stated reporting limit







Appendix B

EDR Report

The EDR Radius Map with GeoCheck®

Standard Products, Inc 650 East Gilbert Street Wichita, KS 67211

Inquiry Number: 2042731.2s

October 02, 2007

The Standard in **Environmental Risk** Information

440 Wheelers Farms Road Milford, Connecticut 06461

Nationwide Customer Service

Telephone: 1-800-352-0050 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map.	2
Detail Map.	3
Map Findings Summary.	4
Map Findings.	6
Orphan Summary.	
Government Records Searched/Data Currency Tracking.	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum.	A-1
Physical Setting Source Summary.	A-2
Physical Setting SSURGO Soll Map.	A-5
Physical Setting Source Map.	A-25
Physical Setting Source Map Findings.	A-26
Physical Setting Source Records Searched.	A-315

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

Disclaimer - Copyright and Trademark Notice
This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, inc. It cannot be concluded from this Report that coverage information for the larget and surrounding properties does not exist from other sources. No Wargary Tey Presses Do Rie Burlieb, is MADE WHATSOCKET IN CONNECTION WITH THIS REPORT, ENVIRONMENTAL DATA RESOURCES, INC. BURLIED, IS MADE WHATSOCKET IN CONSTRUCTION WITH THIS REPORT, ENVIRONMENTAL DATA RESOURCES, INC. BE LUBBLE TO ANY DIE, WHETHER ASSISTED BY THE USER, IN OF EVERT SALL ENVIRONMENTAL DATA RESOURCES, INC. BE LUBBLE TO ANYONE, WHETHER ASSISTED BY THE USER, IN OF EVERT SALL ENVIRONMENTAL DATA RESOURCES, INC. BE LUBBLET ON ANYONE, WHETHER ASSISTED BY THE USER, INC. BESTRICTLY CONSEQUENTIAL, OR EXEMPLAY DAMAGES. ANY LUBBLITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchases accepts this Report "AS IS". Any nailyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental site Assessment performed by an environmental provide information regarding the environmental risk for any property. Additionally, the information provided in this Report are to to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission. EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

650 EAST GILBERT STREET WICHITA, KS 67211

COORDINATES

Latitude (North): 37.674700 - 37* 40* 28.9* Longitude (West): 97.330600 - 97* 19* 50.2**

Universal Tranverse Mercator: Zone 14 UTM X (Meters): 647222.9 UTM Y (Meters): 4170829.5

1293 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map:

37097-F3 WICHITA EAST, KS 1982

Most Recent Revision:

TARGET PROPERTY SEARCH RESULTS

Elevation:

The target property was identified in the following records. For more information on this property see page 6 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
LAND TOOL COMPANY 650 & 815 E GILBERT ST WICHITA, KS 67211	FINDS	110023128578
LAND TOOL COMPANY 650 & 815 E GILBERT ST WICHITA, KS 67211	CERCLIS	KSD984966549
STANDARD PRODUCTS, INC. (FORMER) 650 EAST GILBERT WICHITA, KS	SHWS Facility Status: Active	N/A
STANDARD PRODUCTS, INC. (FORMER) 650 E GILBERT ST WICHITA, KS 67211	FINDS	110030569891

EXECUTIVE SUMMARY

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

FEDERAL RECORDS

Delisted NPL...... National Priority List Deletions NPL LIENS..... Federal Superfund Liens CERC-NFRAP..... CERCLIS No Further Remedial Action Planned CORRACTS...... Corrective Action Report RCRA-TSDF..... Resource Conservation and Recovery Act Information RCRA-LQG...... Resource Conservation and Recovery Act Information ERNS. Emergency Response Notification System HMIRS Hazardous Materials Informatio
US ENG CONTROLS Engineering Controls Sites List Hazardous Materials Information Reporting System US INST CONTROL...... Sites with Institutional Controls DOD. Department of Defense Sites FUDS. Formerly Used Defense Sites
US BROWNFIELDS. A Listing of Brownfields Sites CONSENT..... Superfund (CERCLA) Consent Decrees Records Of Decision UMTRA...... Uranium Mill Tailings Sites ODL..... Open Dump Inventory TRIS...... Toxic Chemical Release Inventory System TSCA..... Toxic Substances Control Act Act)/TSCA (Toxic Substances Control Act) SSTS..... Section 7 Tracking Systems LUCIS. Land Use Control Information System DOT OPS Incident and Accident Data ICIS. Integrated Compilance Information System
HIST FTTS. FIFRA/TSCA Tracking System Administrative Case Listing RADINFO...... Radiation Information Database LIENS 2..... CERCLA Lien Information PADS..... PCB Activity Database System MLTS..... Material Licensing Tracking System MINES..... Mines Master Index File RAATS....... RCRA Administrative Action Tracking System

STATE AND LOCAL RECORDS

LAST	Leaking Aboveground Storage Tank
SPILLS	Kansas Spills Database
	Institutional Controls Information
VCP	Identified Sites List
DRYCLEANERS	Registered Drycleaning Facilities

TC2042731.2s EXECUTIVE SUMMARY 1

TRIBAL RECORDS

INDIAN RESERV...... Indian Reservations

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

INDIAN UST...... Underground Storage Tanks on Indian Land

EDR PROPRIETARY RECORDS

Manufactured Gas Plants... EDR Proprietary Manufactured Gas Plants

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property. Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in bold Italics are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

FEDERAL RECORDS

CERCLIS: The Comprehensive Environmental Response, Compensation and Liability Information System contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

A review of the CERCLIS list, as provided by EDR, and dated 04/23/2007 has revealed that there is 1 CERCLIS site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
AIRCRAFT INSTRUMENT & DEVLPMEN	317 E LEWIS ST	1/4 - 1/2 NNW	L52	50

RCRAInfo: RCRAInfo is EPA's comprehensive information system, providing access to date supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System(RCRIS). The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of actually hazardous waste per month. Small quantity generators (SQGS) generate between 100 kg and 1,000 kg of hazardous waste per month Large quantity generators generate over

EXECUTIVE SUMMARY

1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

A review of the RCRA-SQG list, as provided by EDR, and dated 06/13/2006 has revealed that there are 11 RCRA-SQG sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
EASTON MFG CO INC THE	1023 S SANTA FE	0 - 1/8 SSE	B5	8
TRANNY SHOP THE	518 E GILBERT	0 - 1/8 W	10	12
HEMCO PLUMBING AND HEATING INC	1139 S SANTA FE	1/8 - 1/4 S	12	14
TARGET REFRIGERATION INC	901 GILBERT	1/8 - 1/4 E	C15	22
WALT KEELER CO INC THE SHOP	1101 S MOSLEY	1/8 - 1/4 ESE	18	23
RESORT INC THE	725 E LINCOLN	1/8 - 1/4 SSE	23	28
JAYHAWK PLUMBING INC	800 E LINCOLN	1/8 - 1/4 SSE	E24	28
CAMELOT CLNRS	1001 S WASHINGTON	1/8 - 1/4 E	F26	29
TENNISON BROS INC	1021 S WASHINGTON	1/8 - 1/4 ESE	29	31
T & T TREE SVC INC	722 S WASHINGTON	1/8 - 1/4 ENE	G30	32
Lower Elevation	Address	Dist / Dir	Map ID	Page
BLADES AUTO	840 S ST FRANCIS	1/8 - 1/4 NNW	16	22

STATE AND LOCAL RECORDS

SHWS: The State Hazardous Waste Sites records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. The data come from the Department of Health & Environment's list: Summary of Bureau of Environmental Remediation Sites in Kansas.

A review of the SHWS list, as provided by EDR, and dated 08/20/2007 has revealed that there are 20 SHWS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
KELLEY INSTRUMENTS, INC. (FORM Facility Status: Active	1024 S. SANTA FE	0 - 1/8 SSE	B6	9
GILBERT & MOSLEY Facility Status: Active	GILBERT / MOSLEY STRE	1/8 - 1/4 E	C13	15
REID SUPPLY Facility Status: Active	911 INDIANAPOLIS STREET	1/8 - 1/4 ENE	D20	25
APCO FACILITY (FORMER) Facility Status: Active	1001 E LINCOLN ST	1/4 - 1/2 SE	/38	37
AIRCRAFT INSTRUMENTS & DEVELOP Facility Status: Active	535 S TOPEKA	1/4 - 1/2NNW	L53	56
BUS BARN FACILITY SOURCE AREA Facility Status: Active	700 E WATERMAN	1/2 - 1 N	57	58
INSTRUMENTS, INC. (FORMER) Facility Status: Active	205 EAST LEWIS	1/2 - 1 NW	58	60
GREDE FOUNDRIES, INC. Facility Status: Resolved	805 E BOSTON	1/2 - 1 S	59	62
TRI-STATE NORTH Facility Status: Active	326-330 S. COMMERCE ST.	1/2 - 1 N	60	63

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
AVERY HYDRAULIC JACK (FORMER) Facility Status: Active	717 EAST HARRY	1/2 - 1 S	61	64
B&G PLATING Facility Status: Active	1025 E HARRY	1/2 - 1 SSE	63	67
BEST CLNRS & LAUNDRY Facility Status: Active	1614 \$ BROADWAY	1/2 - 1 SSW	64	68
KANSAS PLATING Facility Status: Active	110 N MOSLEY	1/2 - 1 NNE	66 -	73
TRI-STATE LAUNDRY SUPPLY Facility Status: Active	724 E OSIE ROAD	1/2 - 1 S	M67	74
HARCROS CHEMICALS INC Facility Status: Active	727 E OSIE	1/2 - 1 \$	M68	76
123 N MARKET, WICHITA Facility Status: Resolved	123 N MARKET	1/2 - 1 NNV	V 69	79
ARTISTIC SERVICES Facility Status: Active	1612 E HARRY	1/2 - 1 SE	70	80
QUICK & EASY Facility Status: Active	1552 S HYDRAULIC	1/2 - 1 SE	71	82
Lower Elevation	Address	Dist / Dir	Map ID	Page
LORAC COMPANY Facility Status: Active	624 EAST HARRY STREET	1/2 - 1 S	62	66
AVERY DIAL SHOPS (FORMER) Facility Status: Active	1218 EAST HARRY	1/2 - 1 SSE	65	72

SWF/LF: The Solid Waste Facilities/Landfill Sites records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. The data come from the Department of Health & Environment's Directory of Sanitary Landfills, Solid Waste Transfer Stations and Collectors in Kansas.

A review of the SWF/LF list, as provided by EDR, and dated 08/16/2007 has revealed that there is 1 SWF/LF site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
EAGLE TIRE CENTER	1128 E. LINCOLN	1/4 - 1/2 ESE	J46	48

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Kansas Department of Environmental Protection's LUST Incident Report.

A review of the LUST list, as provided by EDR, and dated 07/16/2007 has revealed that there are 27 LUST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
PERRY & SON CONSTRUCTION Facility Status: Closed	1024 S SANTA FE	0 - 1/8 SSE	B 7	11
MCKESSON CORPORATION	800 E GILBERT	0 - 1/8 E	9	12

EXECUTIVE SUMMARY

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
LOPER ELECTRIC CO., INC Facility Status: Closed	914 E GILBERT	1/8 - 1/4 E	C17	22
L J THOMPSON, INC. Facility Status: Closed	611 E LINCOLN	1/8 - 1/4 SSW	22	27
MICHAELIS REAL ESTATE #9 Facility Status: Closed	801 E LINCOLN	1/8 - 1/4SSE	E25	29
HEPHNER TV Facility Status: Monitor	1002 S WASHINGTIN	1/8 - 1/4 E	F28	31
R-CON CORPORATION Facility Status: Closed	826 E. LINCOLN	1/8 - 1/4 SSE	H31	32
WALT KEELER Facility Status: Closed	826 E LINCOLN	1/8 - 1/4 SSE	Н33	35
KANSAS BUILDING SUPPLY Facility Status: Closed	707 S WASHINGTON	1/4 - 1/2 ENE	G34	35
SUNSET PRODUCTS INC. Facility Status: Closed	750 SOUTH EMPORIA	1/4 - 1/2NNW	35	36
TOWN & COUNTRY #04 Facility Status: Monitor	921 S. BROADWAY	1/4 - 1/2WNW	36	37
PRICE BROS EQUIPMENT Facility Status: Closed	619 S WASHINGTON	1/4 - 1/2 ENE	37	37
HOUSE OF STEWARTS REALTY Facility Status: Closed	1001 E LINCOLN	1/4 - 1/2 SE	139	39
APCO (MARKS LINCOLN ST APCO) Facility Status: Monitor	1002 E LINCOLN	1/4 - 1/2SE	140	39
STEWART ENTERPRISES Facility Status: Monitor	1202 S. WASHINGTON	1/4 - 1/2 SE	141	40
TOTAL #1851, WICHITA Facility Status: Monitor	1023 E LINCOLN	1/4 - 1/2 SE	142	45
TOWN & COUNTRY MKT #64 Facility Status: Closed	718 S BROADWAY	1/4 - 1/2 NW	43	46
WICHITA FIRE STATION #2 Facility Status: Monitor	1240 S BROADWAY	1/4 - 1/2SW	44	47
MICHAELIS, ABANDONED FACILITY Facility Status: Closed	1128 E LINÇOLN	1/4 - 1/2ESE	J45	48
AMOCO #5092, WICHITA Facility Status: Monitor	603 S BROADWAY	1/4 - 1/2NW	47	48
BUDGET RENT-A-CAR Facility Status: Closed	201 E KELLOGG	1/4 - 1/2 NW	K48	49
QUIK TRIP #381 Facility Status: Monitor	220 E KELLOGG	1/4 - 1/2 NW	49	49
CITY OF WICHITA Facility Status: Closed	743 S MARKET	1/4 - 1/2NW	K51	50
CAINS COFFEE CO. Facility Status: Monitor	427 S WASHINGTON	1/4 - 1/2NNE	54	57
WICHITA FIRE DEPT, PURCHASING Facility Status: Closed Facility Status: Closed	500 S TOPEKA	1/4 - 1/2NNW	55	57

TC2042731.2€ EXECUTIVE SUMMARY 5 TC2042731.2€ EXECUTIVE SUMMARY 6

Lower Elevation	Address	Dist / Dir	Map ID	Page
WICHITA FIRE HISTORICAL BLDG. Facility Status: Closed	1300 S. BROADWAY	1/4 - 1/2 SW	50	49
OK TRANSFER & STORAGE	902 E ZIMMERLY	1/4 - 1/2 SSE	56	58

AOCONCERN: Kansas AOC Areas Of Concern.

A review of the AOCONCERN list, as provided by EDR, has revealed that there is 1 AOCONCERN site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
GII REPTAIOSI EV		0 - 1/8	n	А

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Health & Environment's UST (Report) Listing Including Names.

A review of the UST list, as provided by EDR, and dated 07/16/2007 has revealed that there are 7 UST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
TENANT (TEMPORARY) PERRY CONST	1024 S. SANTA FE	0 - 1/8 SSE	B8	11
GE APPLIANCE SERVICE SHOP	820 E. INDIANAPOLIS	1/8 - 1/4NE	11	13
AIR CAPITOL FUEL & OIL	901 E GILBERT	1/8 - 1/4 E	C14	18
LOPER ELECTRIC CO., INC	914 E GILBERT	1/8 - 1/4 E	C17	22
REID SUPPLY COMPANY	911 E INDIANAPOLIS	1/8 - 1/4 ENE	D19	24
HEPHNER, LONNIE E.	1002 S WASHINGTON	1/8 - 1/4 E	F27	29
R-CON CORPORATION.	826 E. LINCOLN	1/8 - 1/4 SSE	H32	32

AST: The Aboveground Storage Tank database contains registered ASTs. The data come from the Department of Health & Environment's AST (Report) Listing Including Names.

A review of the AST list, as provided by EDR, and dated 07/16/2007 has revealed that there is 1 AST site within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir Map ID	Page
BOGE IRON & METAL CO., INC.	800 SO ST FRANCIS	1/8 - 1/4NNW 21	26

Due to poor or inadequate address information, the following sites were not mapped:

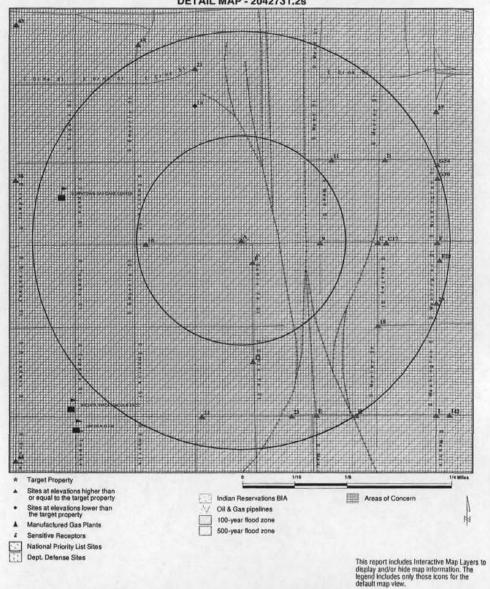
EXECUTIVE SUMMARY

Site Name Database(s) MCCONNELL AFB SHWS, SPILLS CECO (4125 WEST PAWNEE, WICHITA) SHWS CECU (4125 WEST PAWNEE, WICHITA)
13TH & WASHINGTON, WICHTA (SEE NIC #C208770150)
RAYTHEON AIRCRAFT CORP (SALVAGE YARD SITE) (BEECH)
19TH & GROVE SITE
FORMER FOOD 4 LESS
29TH & GROVE, WICHITA
ARRINGDAL DEFINIEDS SHWS SHWS SHWS SHWS, VCP SHWS, FINDS BARNSDALL REFINERY SHWS WILLIAMS NATURAL GAS - WICHITA COMP STN POND CLOSR SHWS CHASE GASOLINE SPILL, 69TH & WEBB, WICHITA SHWS, VCP 21ST STREET CORRIDOR BTA - #1 SHWS, BROWNFIELDS 21ST STREET CORRIDOR BTA - #4 SHWS, BROWNFIELDS 21ST STREET CORRIDOR BTA - #2 SHWS. BROWNFIELDS BOMHOFF PROPERTY SHWS, FINDS, VCP ECCO INDUSTRIAL ADDITION SHWS, VCP CLAY DAVIS PROPERTY, WICHITA MCCONNELL AFB - IRP SITE ST-17 SHWS, VCP SHWS JIM MORGAN'S FINE DRYCLEANING
AIR CAPITOL DIAL (FORMER)
SOUTH WASHINGTON & ENGLISH (SWE)
WICHITA DENTAL MERCURY SHWS SHWS SHWS CERCLIS WASTE DISPOSAL L.L.C. TRANSFER STATION SWF/LF CITY OF WICHITA/CHAPIN SITE SWF/LF H-30 DRILLING, INC. LUST TRANE CO LUST WICHITA AIR CONDITIONING LUST

TC2042731.2s EXECUTIVE SUMMARY 7

TC2042731.2s EXECUTIVE SUMMARY 8

OVERVIEW MAP - 2042731.2s Target Property Sites at elevations higher than or equal to the target property Indian Reservations BIA Areas of Concern Sites at elevations lower than Oil & Gas pipelines the target property 100-year flood zone Manufactured Gas Plants 500-year flood zone National Priority List Sites Dept. Defense Sites


This report includes interactive Map Layers to display and/or hide map information. The legend includes only those icons for the default map view.

SITE NAME: Standard Products, Inc ADDRESS: 650 East Gilbert Street Wichita KS 67211 LAT/LONG: 37.6747 / 97.3306

CLIENT: SCS Engineers CONTACT: Lindsay James INQUIRY #: 2042731.25 October 02, 2007 7:47 am

Copyright -> 2007 EDR. Inc. s- 2007 Tele Atlas Rel. 87/2006.

DETAIL MAP - 2042731.2s

SITE NAME: Standard Products, Inc. ADDRESS:

650 East Gilbert Street LAT/LONG: 37.6747 / 97.3306

SCS Engineers CONTACT: Lindsay James

INQUIRY #: 2042731.2s DATE: October 02, 2007 7:47 am Copyright > 2007 EDR. Inc. > 2007 Tele Atles Rel. 07/2005.

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	>1	Total Plotted
FEDERAL RECORDS								
NPL Proposed NPL Proposed NPL Delisted NPL NPL LIENS CERCLIS CERC.NFRAP CORRACTS RCRA TSD RCRA Lg. Quan. Gen. RCRA Sm. Quan. Gen. ERNS HMIRS US ENG CONTROLS US INST CONTROL DOD FUDS US BROWNFIELDS CONSENT ROD UMTRA ODI TRIS TISCA FTITS SSTS LUCIS DOT OPS ICIS HIST FTTS CDL RADINFO LIENS 2 PADS MLTS MITLENS NS LENS LOCIS LIENS 2 PADS MLTS LIENS LI	×	1.000 1.000 1.000 1.000 1.000 0.500 0.250 0.250 0.250 TP 0.500 0.500 1.000 0.500 1.000 0.500 1.000 0.500 TP	000K000002KK000000000KKKK0KKKKKKKKKKKK	000K00009KK0000000000KKKK0KKKKKKKKKKKK	0 0 0 R 1 0 0 0 R R R R R 0 0 0 0 0 0 0	. o o o z z z z z z z z z z o o z o o z o o z		0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MINES FINDS RAATS	x	0.250 TP TP	0 NR NR	0 NR NR	NR NR NR	NR NR NR	NR NR NR	0
STATE AND LOCAL RECOR	RDS							
State Haz. Waste State Lendfill LUST AOCONCERN UST LAST AST SPILLS	x	1.000 0.500 0.500 1.000 0.250 0.500 0.250 TP	1 0 2 1 1 0 0 NR	2 0 6 0 6 0 1 NR	2 1 19 0 NR 0 NR NR	15 NR NR 0 NR NR NR	NR NR NR NR NR NR NR	20 1 27 1 7 0 1

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	<u>> 1</u>	Total Plotted
INST CONTROL VCP		0.500 0.500	0	0	0	NR NR	NR NR	0
DRYCLEANERS		0.250	0	0	NR	NR	NR	Ō
BROWNFIELDS CDL		0.500 TP	0 NR	0 NR	0 NR	NR NR	NR NR	0
TRIBAL RECORDS								
INDIAN RESERV		1.000	0	٥	0	0	NR	0
INDIAN LUST		0.500	0	0	0	NR	NR	0
INDIAN UST		0.250	0	0	NR	NR	NR	0
EDR PROPRIETARY RECOI	RDS							
Manufactured Gas Plants		1.000	0	0	0	0	NR	0

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

MAP FINDINGS Map ID Direction Distance Distance (ft.) EDR ID Number Database(s) EPA ID Number Elevation LAND TOOL COMPANY FINDS 1008900368 A1 650 & 815 E GILBERT ST 110023128578 Target WICHITA, KS 67211 Property Site 1 of 4 in cluster A Actual: FINDS: 1293 ft. Other Pertinent Environmental Activity Identified at Site CERCLIS (Comprehensive Environmental Response, Compensation, and Liability Information System) is the Superfund database that is used to support management in all phases of the Superfund program. The

system contains information on all aspects of hazardous waste sites, including an inventory of sites, planned and actual site activities, and financial Information.

LAND TOOL COMPANY A2 650 & 815 E GILBERT ST Target **WICHITA, KS 67211** Property

CERCLIS 1009218898

KSD984966549

A3

End Date:

Not reported

1293 ft.

Site 2 of 4 in cluster A CERCLIS:

Site ID:

0702117 Federal Facility: Not a Federal Facility

NPL Status: Not on the NPL

Non NPL Status: Addressed as Part of Another non-NPL Site

CERCLIS Site Contact Name(s):

Contact Name:

PAUL ROEMERMAN

Contact Tel: (913) 551-7694

Contact Title: Site Assessment Manager (SAM)

CERCLIS Site Alias Name(s):

GILBERT & MOSLEY Alias Name: Alias Address:

Not reported

Site Description: HAS 2 WAREHOUSES LOCATED @ 650 E GILBERT & 815 E GILBERT. ABANDONED DRUMS, SOME DRUMS MARKED METHYLENE CHLORIDE. SITE BEING INCLUDED AS PART OF GILBERT &

MOSLEY (KSD984969281)

CERCLIS Assessment History:

Action: Date Started: DISCOVERY Not reported

Date Completed: 06/14/1988

Priority Level: Not reported

Action:

REMOVAL 05/05/1989 Cleaned up

Date Started: Date Completed: 08/18/1989

Priority Level: Action:

PRELIMINARY ASSESSMENT

Date Started: Date Completed: 10/03/2005 10/21/2005

Priority Level:

Addressed as part of another non-NPL site

MAP FINDINGS Map ID Direction Distance FDR ID Number Distance (ft.) Elevation Database(s) EPA ID Number STANDARD PRODUCTS, INC. (FORMER) 5108631433 **650 EAST GILBERT** Target WICHITA, KS Property Site 3 of 4 in cluster A Actual: SHWS: 1293 ft. Site ID: 2233 Has Env Use Control: C208772288 Project code: PM Name: BENNE, R. Site Status: Active District Office: SCDO Lat/Long: 37.67488 / -97.3305 River Basin: Lower Arkenses Aquifer Yield: Equus Beds Other Aquifers: Not reported Parent PC: Not reported Parent Name: Not reported CERCLIS ID: Not reported Discovery Date: Not reported Depth To GW: Not reported Depth To Bedrock: Not reported Aquifer Yield: Not reported Not reported GW Flow Direction: Not reported Acres Affected: Weste Present: Felse Product Present: False Program: Site Assessment Lead Agency: BER - Remedial Contaminants: Not reported Media Act: Not reported Media Pot: Not reported Source: Not reported Land Use: Not reported Private well: Not reported Waste Present: Not reported Product Not reported Not reported Receptor Act: Receptor Pot: Not reported Remed Air: Not reported Remed Soil: Not reported Remed Water: Not reported Remedir: Not reported Not reported Eucan Number: Not reported Date: Not reported Narrative: Sector Assessment candidate for Unified Focused Assessment, 2007-08 fiscal year. Activity Type: Not reported Activity Status: Not reported Start Date: Not reported

TC2042731.2s Page 6

TC2042731.2s Page 7

Distance Distance (ft.) EDR ID Number Elevation Database(s) **EPA ID Number** A4 STANDARD PRODUCTS, INC. (FORMER) 1010152162 650 E GILBERT ST 110030569891 Tarnet WICHITA, KS 67211 Property Site 4 of 4 in cluster A FINDS: 1293 ft. Other Pertinent Environmental Activity Identified at Site KS-FP (Kansas - Facility Profiler) is a geographically-based data warehouse site that presents information about fecilities and locations of interest to the KDHE. This site has in excess of twenty environmental interest which contains information on closed facilities, completed cleanups, and past operations as well as data on current operations and activities. GILBERT-MOSLEY ACCONCERN CK80000001 < 1/8 WICHITA, KS 1 ft. AOCONCERN: KS Areas of concern. EASTON MFG CO INC THE B5 RCRA-SQG 1000863400 88E 1023 S SANTA FE FINDS KS0000107482 WICHITA, KS 67211 < 1/8 155 ft. Site 1 of 4 in cluster B Relative: RCRAInfo: Higher EASTON MFG CO INC THE Owner Actual: (316) 263-4914 1296 ft. KS0000107482 FPA ID Contact: Not reported Classification: Small Quantity Generator TSDF Activities: Not reported Violation Status: No violations found Other Pertinent Environmental Activity Identified at Site RCRAinfo is a national information system that supports the Resource Conservation and Recovery Act (RCRA) program through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA

program staff to track the notification, permit, compliance, and

corrective action activities required under RCRA.

MAP FINDINGS

Map ID

Direction

Direction Distance **EDR ID Number** Distance (ft.) Database(s) EPA ID Number Elevation B6 KELLEY INSTRUMENTS, INC. (FORMER) SHWS \$108047953 SSE 1024 S. SANTA FE WICHITA, KS < 1/8 169 ft. Site 2 of 4 in cluster B Relative: SHWS: Higher Site ID: 2137 Actual: Has Env Use Control: 1296 ft. Project code: C208772195 PM Name: BENNE, R. Site Status: Active SCDO District Office: 37.67386 / -97.32993 Lat/Long: River Basin: Lower Arkansas Aquifer Yield: Equus Beds Other Aquifers Not reported Parent PC: Not reported Parent Name Not reported CERCLIS ID: Not reported Discovery Date: 1/26/2007 Depth To GW: 21-30 feat Depth To Bedrock: Not reported Aquifer Yield: Not reported GW Flow Direction: Acres Affected: Not reported Waste Present: True Product Present Falsa Site Assessment Program: BER - Remedial Lead Agency: Other (see Site Narrative) Contaminants Ground Water, Soil Media Act Media Pot: Not reported Source: Abandoned Facility Land Use: Not reported Private well: Not reported Waste Present: Hazardous Waste Not reported Product: Receptor Act: Sensitive Populations Receptor Pot: Not reported Not reported Remed Air: Remed Soil: Not reported Remed Water Not reported Remedir Not reported Alias: Not reported Eucan Number Not reported Date: Not reported The former Kelley Instruments, Inc. (KYII) radium dial shop facility was Narrative located at 1024 (also 1004 and 1008) South Santa Fe Avenue in Sedgwick County, Kansas. The facility was in operation repairing aircraft instruments (including some with radiumdials and faces) at the licensed location from apparently as early as 1983 to as late as 1990 under the name KYII. KYII is listed in the Polk Directories for Wichita as being located within the same city block at 1004 and 1008 South Santa Fe Avenueas early as 1971 (pre-license period). The company was incorporated in 1961. KDHEs Bureau of Air and Radiation (BAR) issued a license for repair operations for radium dist instruments that were restricted to just having possession of said instruments. The license restricted the handling of radium dial instruments including the

amount of time of possession to no opening the case of, or removal of any

MAP FINDINGS

Map ID

Map ID
Direction
Distance
Distance (ft.)
Elevation Site

MAP FINDINGS

Database(s)

KELLEY INSTRUMENTS, INC. (FORMER) (Continued)

EPA ID Number \$108047953

EDR ID Number

painted component of, or repair of a radium dial instrument. BAR granted this conditional license to KYII permitted at this location with issuance of license #25-R552-01 on November 30, 1984. A copy of a notification card for change of address is in the BAR file. The card states the date for the location change is January 8, 1990 to the present location of 4131 West May in Wichits. It is not known if a close-out survey was conducted. This UFA revealed evidence of the following Recognized Environmental Conditions in connection with the property: 1) Concentrations of radium-226are elevated in soils from one area located generally southeast of the northern building located at 1008 South Santa Fe Avenue; 2) Arsenic and lead is present in the soil in concentrations exceeding their respective residential RSK standards at thesame sample locations. However, the arsenic concentration is less than the 3X background arsenic value; 3) PCE was detected in all four ground water samples, and in all but sample #1 the concentration exceeded its MCL concentration. The UFA hasrevealed evidence of the following Historical Recognized Environmental Conditions (HREC) in connection with the property: 1) Redioactive material licensing was issued for operations that included having possession of radium bearing instruments. Thelicense restricted the handling of radium dial instruments including the amount of time of possession to no opening the case of, or removal of any painted component of, or repair of a radium dial instrument. A radiological surface soil survey of the commercial complex of the former KYII facility using the Ludium meter was conducted on March 14, 2007. The survey included the areas close to the buildings, the railroad right-of-way, and soil/grass/paved areas mainly south and west of the building. One area in the eastern portion of the property had elevated readings for radiation. The highest surface reading recorded was 103 microroentgens per hour (R/hr). This survey point was on the surface of a narrow concrete ramp and was not sampled. Sample location #1 is approximately 1.5 feet east and six feet north of the high surficial radiation reading. Samples from one sampling location at two depth intervals exceeded the EPA screening level for radium-226. Sample #1 from 0.25feet in depth had the highest concentration of radium-226 indicated at 102 pCi/g. Sample #1 from 3-4 feet in depth indicated 20.2 pCi/g of radium-226. The EPA/NRC MOU screening level for radium-226 in both residential and non-residential soils is5 pCl/g (plus background, which for this site is approximately 0.89 pCi/g). Arsenic was detected at levels exceeding residential soil pathway RSK standards. Sample #1 collected at a depth interval of five to six feet had an ersenic concentrationof 12.7 mg/Kg exceeding the arsenic residential soil pathway RSK values of 11 mg/kg. Note that the soil 3X background arsenic value for the respective depth exceeds the fore-mentioned analytical results. From the same soil sample lead was detectedat 458 mg/Kg exceeding the lead residential soil pathway RSK standard of 400 mg/Kg. PCE was indicated in all but sample #1 in concentrations exceeding its residential and nonresidential federal MCL value. RECs identified in this UFA consist of one area situated southeast of the northern building located on the commercial lot located at 1004 Santa Fe South Avenue as having radium-226 concentrations in soils exceeding EPA screening levels for radium-226. Soil samples from location #1also exceed their respective residential RSK standards for arsenic and lead. The arsenic levels indicated however, are below the site-specific 3X background concentration. Multiple VOCs were detected in ground water collected from the site. The site is situated within the boundaries of the Gilbert-Mosely (GM) site area where VOC concentrations are known to be elevated. PCE was indicated in all samples (except sample #1) in concentrations exceeding its residential and nonresidential federal MCL value. The PCE levels detected from the background. #2, and #3 ground water samples (0.058, 0.0077 and 0.011 mg/L respectively) exceeded the primary MCL for PCE of 0.005 mg/L. VOC contamination in ground water is being addressed by the City of Wichita under a KDHE consent agreement

MAP FINDINGS Map ID Direction Distance Distance (ft.) EDR ID Number EPA ID Number Database(s) Elevation KELLEY INSTRUMENTS, INC. (FORMER) (Continued) 8108047953 for the GM area. The data from this study could be assimilated or used to supplement the Gilbert and Mosely project (C2-087-00175). Since the highest PCE levels were detected in the background sample, PCE releases at the KYII site appear to be attributable to the GM site. Significant levels of regium potentially attributable to radium dial repair operations appear to be present at the Kelley Instruments, Inc. site in excess of EPA/NRC acreening values for surficial soil. Lead was also detected above residential RSK levels. KDHE will attempt to identify potentially responsible parties (PRPs) to participate in a state cleanup program. The site may qualify for future CERCLA remedial andremoval response if a viable PRP is not identified. Activity Type: Unified Focused Assessment (UFA) **Activity Status:** Start Date: 1/26/2007 End Date: Not reported **R**7 PERRY & SON CONSTRUCTION LUST 8101833646 1024 S SANTA FE SSE **WICHITA KS 67202** < 1/8 169 ft. Site 3 of 4 in cluster B Relative: LUST: Higher Project Number: U2-087-00914 Actual: Project Name: Donald Enoch 1296 ft. Legal Desc Section 28 Legal Desc Township: 27S Legal Desc Range: 01W Site Status: Closed Facility ID: 29549 Initial Report Date: 4/1/1992 Release Date: Not reported TENANT (TEMPORARY) PERRY CONST UST U000874541 B8 SSE 1024 S. SANTA FE N/A WICHITA, KS 67211 < 1/8 169 ft. Site 4 of 4 in cluster B Relative: UST: Facility ID: 29549 Owner ID: 29549 Actual: Tank ID: 001 Capacity (Gals): Tank Type: u Tank Exempt: Nο Permanentiv Out Of Use Tank Status: Hazarda: Not reported Petroleum Substance: Empty, Gas (Incl Alcohol) NonPetroleum Substance: Not reported Estimated Yr in Service: 1900 Date Removed: 4/15/1992 Last Permit Printed: Not reported Current Permit Printed: Not reported Out of service Mo/Yr: 041992 QTY Remaining in Tank:

Filled/Removed:

Line Construction:

Facility Signed Date:

Owner Signed Date:

Facility Update Date:

Phone 24 Hours:

Tank Empty:

Removed

03/15/92

03/15/92

03/15/92

Not reported

Not reported

316-881-3370

Map ID Direction Distance Distance (ft.) EDR ID Number Elevation Database(s) EPA ID Number TENANT (TEMPORARY) PERRY CONST (Continued) U000874541 Marketer?: Standby?: Donald Enoch Contact: Contact Title: Owner Facility Tel: 316-681-3370 Facility 911 Address: 1024 S SANTA FE Facility 911 Zip: WICHITA, KS 67211 Facility District: Facility Location Method: GARMIN 3 PLUS Facility Lat/Long: 37.67400/-97.33013 Facility Feature: Facility Center **WGS84** Facility Datum: ENCOCH, DONALD Owner: Owner Type: Private Or Corp. Owner/Rep Name: Donald Enoch Owner/Rep Title: Owner Owner Tel: 316-681-3370 Owner Address: 5902 POLO DRIVE Owner City, State, Zlp: WICHITA, KS 67208 Owner County: SEDGWICK Principal CERCLA Substance/Chem Abstract Service Num: Not reported MCKESSON CORPORATION LUST 8101833739 East 800 E GILBERT WICHITA, KS 67211 < 1/8 500 ft. LUST: Relative: Project Number: U2-087-01064 Équai Project Name: Mckesson Corp Actual: Legal Desc Section: 28 1293 ft. Legal Desc Township: 27S Legal Desc Range: 01E Site Status: Closed Facility ID: 00001 Initial Report Date: 11/13/1992 Release Date: Not reported TRANNY SHOP THE 10 RCRA-SQG 1000825918 West 518 E GILBERT FINDS KSD985011543 < 1/8 WICHITA, KS 67211 603 ft. **RCRAInfo** Relative Owner: JOHN NEWMAN Higher (316) 267-2797 Actual: EPA ID: KSD985011543 1298 ft. JOHN NEWMAN Contact: (316) 267-2797 Classification: Conditionally Exempt Small Quantity Generator TSDF Activities: Not reported

MAP FINDINGS

Elevation Database(s) EPA ID Number TRANNY SHOP THE (Continued) 1000825916 Violation Status: No violations found FINDS: Other Pertinent Environmental Activity Identified at Site RCRAInfo is a national information system that supports the Resource Conservation and Recovery Act (RCRA) program through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste, RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. **GE APPLIANCE SERVICE SHOP** 11 UST U000199434 820 E. INDIANAPOLIS NE 1/8-1/4 WICHITA, KS 765 ft. UST: Relative: Facility ID: 00033 Owner ID: 00033 Higher Tank ID: Capacity (Gals): 4000 Tank Type: 1296 ft. Tank Status: Permanently Out Of Use Hazards: Not reported Petroleum Substance: Not reported NonPetroleum Substance: Not reported Estimated Yr In Service: 1972 Date Removed: Not reported Last Permit Printed: Not reported Current Permit Printed: Not reported Out of service Mo/Yr: Not reported QTY Remaining in Tank: Not reported Filted/Removed: Removed Tank Empty: Not reported Not reported Line Construction: Facility Signed Date: Not reported Owner Signed Date: Not reported Facility Update Date: Not reported Phone 24 Hours: 502-452-5615 Marketer?: Standby?: Not reported Contact: Sherman Friedman Contact Title: Facility Tel: 502-452-5615 Facility 911 Address: 820 E. INDIANAPOLIS Facility 911 Zip: WICHITA, KS Facility District: Facility Location Method: GARMIN 3 PLUS Facility Lat/Long: 37.67644/-97.32860 Facility Feature: Facility Center WGS84 Facility Datum: GENERAL ELECTRIC Owner. Owner Type: Current Owner/Rep Name Not reported Owner/Rep Title: Not reported Owner Tel: 502-452-5615 Owner Address: APPLIANCE PARK, BLDG. 28, RM.1 Owner City, State, Zip: LOUISVILLE, KS 40225 Owner County: Not reported Principal CERCLA Substance/Chem Abstract Service Num: Not reported Facility ID: 00033 Owner ID: 00033 Tank ID: 002 Capacity (Gals): 3000 Tank Type: Tank Exempt: No

MAP FINDINGS

Map ID

Direction

Distance

Distance (ft.)

EDR (D Number

GEOCHECK®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

STANDARD PRODUCTS, INC 650 EAST GILBERT STREET WICHITA, KS 67211

TARGET PROPERTY COORDINATES

Latitude (North):

37.67470 - 37' 40' 28.9"

Longitude (West): Universal Tranverse Mercator: UTM X (Meters):

97.3306 - 97° 19′ 50.1″ Zone 14 647222.9

UTM Y (Meters): Elevation: 4170829.5

Elevation.

1293 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map:

37097-F3 WICHITA EAST, KS

Most Recent Revision: 1982

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

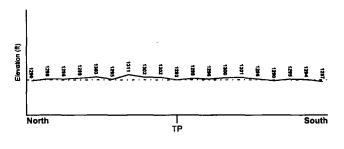
- 1. Groundwater flow direction, and
- Groundwater flow velocity.

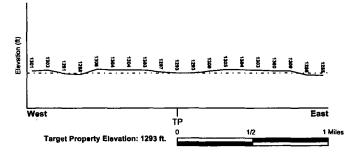
Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION


Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an optinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General South

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

FEMA Flood

Target Property County SEDGWICK, KS Electronic Data

YES - refer to the Overview Map and Detail Map

Flood Plain Panel at Target Property: 2003280025B

Additional Panels in search area: Not Reported

NATIONAL WETLAND INVENTORY

NWI Electronic NWI Quad at Target Property Data Coverage WICHITA EAST

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW*

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

> MAP ID Not Reported

LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

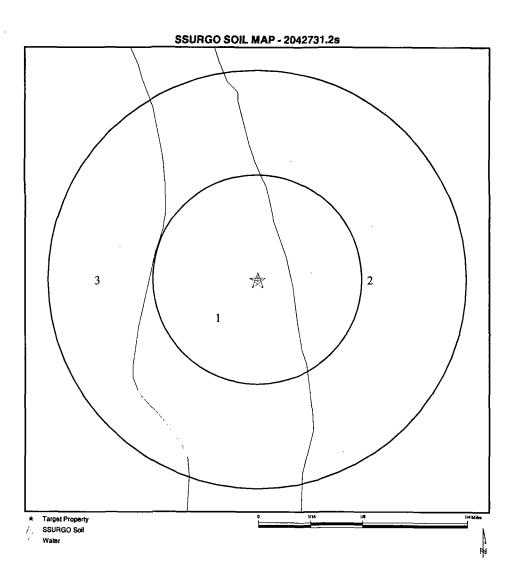
GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity Information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strate date. If such date are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT


GEOLOGIC AGE IDENTIFICATION Category: Stratifed Sequence

Era: Cenozoic System: Quaternary

Quaternary

(decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Amdt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SITE NAME: Standard Products, Inc ADDRESS: 650 East Gilbert Street Wichita KS 67211 LAT/LONG: 37.6747 / 97.3306

CLIENT: SCS Engineers CONTACT: Lindsay James INQUIRY #: 2042731.2s

October 02, 2007 7:47 am

Copyright © 2007 EDR, Inc. © 2007 Tels Affac Pail. 07/2008.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soll Map ID: 1

Soil Component Name:

CANADIAN

Soil Surface Texture:

fine sandy loam

Hydrologic Group:

Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class:

Well drained. Soils have intermediate water holding capacity. Depth to

water table is more than 6 feet.

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: LOW

Depth to Bedrock Min:

> 0 inches

Depth to Bedrock Max:

> 0 inches

			Soil Layer	r Information			
	Bou	indary		Classi	fication		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soll Reaction (pH)
1	0 inches	20 Inches	fine sandy loam	Sin-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay. FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), silt.	Max: 6.00 Min: 2.00	Max: 7.30 Min: 5.60
2	20 inches	35 inches	fine sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Solls.	FINE-GRAINED SOILS, Silts and Clays (figuld limit less than 50%), Lean Clay	Max: 6.00 Min: 2.00	Mex: 8.40 Min: 6.10
3	35 inches	60 inches	fine sandy loam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	FINE-GRAINED SOILS, Silts and Clays (liquid limit feas than 50%), Lean Clay	Max: 20.00 Min: 2.00	Max: 8.40 Min: 6.10

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 2

Soil Component Name:

ELANDCO

Soil Surface Texture:

silt loam

Hydrologic Group:

Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures

Soil Drainage Class:

Well drained. Soils have intermediate water holding capacity. Depth to

water table is more than 6 feet.

Hydric Status; Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: MODERATE

Depth to Bedrock Min:

> 0 inches

Depth to Bedrock Max:

> 0 inches

	Soli Layer Information						
	Bou	indary		Classi	fication		
Layer	Upper	Lower	Soli Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	40 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty	FINE-GRAINED SOILS, Sifts and Clays (liquid limit less than 50%), Lean Clay	Max: 2.00 Min: 0.60	Max: 8.40 Min: 6.60
2	40 inches	60 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Solls.	FINE-GRAINED SOILS, Silts and Ctays (liquid limit less than 50%), Lean Clay	Max: 2.00 Min: 0.60	Max: 8.40 Min: 7.40

Soil Map ID: 3

Soil Component Name:

TABLER

Soil Surface Texture:

silty clay loam

Hydrologic Group:

Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class:

Moderately well drained. Soils have a layer of low hydraulic conductivity, wet state high in the profile. Depth to water table is 3

to 6 feet.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: HIGH

Depth to Bedrock Min:

> 0 inches

Depth to Bedrock Max:

> 0 inches

	Soil Layer Information							
	Bot	indary	T	Classi	fication			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)	
1	0 inches	9 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 0.60 Min: 0.20	Max: 8.40 Min: 5.60	
2	9 inches	32 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 0.08 Min: 0.00	Max: 8.40 Min: 6.10	
3	32 inches	60 inches	silty day	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Ctays (liquid limit 50% or more), Fat Clay.	Max: 0.06 Min: 0.00	Max: 8.40 Min: 7.40	

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE

SEARCH DISTANCE (miles)

Federal USGS Federal FRDS PWS

PWS N

Nearest PWS within 1 mile 1,000

State Database 1.0

FEDERAL USGS WELL INFORMATION

MAP ID

WELL ID

1.000

LOCATION FROM TP

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

FEDERAL USGS WELL INFORMATION

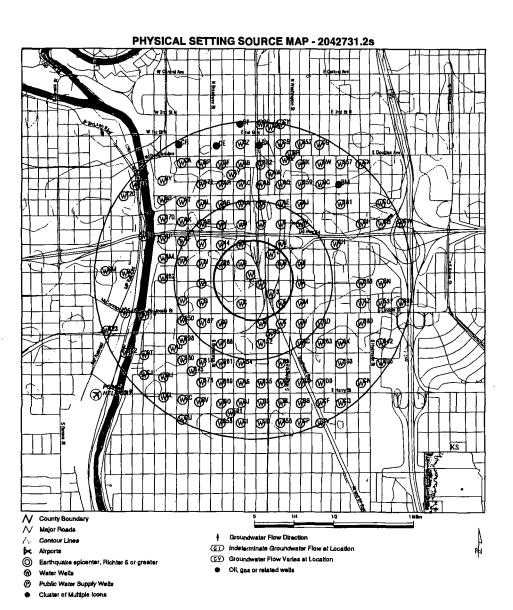
MAP ID	WELL ID	FROM TP
BM445	USGS2729679	1/2 - 1 Mile NE
BX585	USGS2729687	1/2 - 1 Mile North
CE835	USGS2729690	1/2 - 1 Mile NNW
CE636	USGS2729689	1/2 - 1 Mile NNW
CE637	USGS2729691	1/2 - 1 Mile NNW
CE638	USGS2729688	1/2 - 1 Mile NNW
706	USGS2729675	1/2 - 1 Mile NW
CR722	USGS2729692	1/2 - 1 Mile NNW
CT781	USGS2729695	1/2 - 1 Mile North

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
No PWS System Found		

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION


		LOCATION
MAP ID	WELL ID	FROM TP
1	KS3000000042745	0 - 1/8 Mile NNW
A2	KS3000000042537	0 - 1/8 Mile ESE
A3	KS3000000042536	0 - 1/8 Mile ESE
A4	KS3000000042539	0 - 1/8 Mile ESE
A5	KS3000000042538	0 - 1/8 Mile ESE
B6	KS3000000042959	1/8 - 1/4 Mile NW
B7	KS300000042958	1/8 - 1/4 Mile NW
B8	KS300000042957	1/8 - 1/4 Mile NW
B9	KS3000000042960	1/8 - 1/4 Mile NW
B10	KS3000000042963	1/8 - 1/4 Mile NW
B11	KS3000000042962	1/8 - 1/4 Mile NW
B12	KS300000042961	1/8 - 1/4 Mile NW
13	KS3000000042345	1/8 - 1/4 Mile SE
C14	KS3000000042044	1/8 - 1/4 Mile SSW
C15	KS3000000042045	1/8 - 1/4 Mile SSW
C16	KS3000000042048	1/8 - 1/4 Mile SSW
17	KS300000043256	1/8 - 1/4 Mile NE
D18	KS3000000042971	1/8 - 1/4 Mile ENE
D19	KS300000042970	1/8 - 1/4 Mile ENE
D20	KS300000042972	1/8 - 1/4 Mile ENE
D21	KS3000000042974	1/8 - 1/4 Mile ENE
D22	KS3000000042973	1/8 - 1/4 Mile ENE
E23	KS300000042047	1/8 - 1/4 Mile SE
E24	KS300000042048	1/8 - 1/4 Mile SE
E25	KS300000042049	1/8 - 1/4 Mile SE
26	K\$300000042952	1/8 - 1/4 Mile WNW
F27	KS3000000043543	1/8 - 1/4 Mile NNW
F28	K\$300000043542	1/8 - 1/4 Mile NNW

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

LOCATION

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	FROM TP
F29	KS3000000043544	1/8 - 1/4 Mile NNW
F30	KS3000000043546	1/8 - 1/4 Mile NNW
F31	KS3000000043545	1/8 - 1/4 Mile NNW
G32	KS3000000041521	1/4 - 1/2 Mile South
G33	KS3000000041522	1/4 - 1/2 Mile South
H34	KS3000000043555	1/4 - 1/2 Mile NE
H35	KS3000000043554	1/4 - 1/2 Mile NE
H36	KS3000000043557	1/4 - 1/2 Mile NE
H37	KS3000000043556	1/4 - 1/2 Mile NE
138	KS300000042543	1/4 - 1/2 Mile East
139	KS3000000042542	1/4 - 1/2 Mile East
140	KS3000000042541	1/4 - 1/2 Mile East
141	KS3000000042546	1/4 - 1/2 Mile East
142	K\$300000042545	1/4 - 1/2 Mile East
143	· KS3000000042544	1/4 - 1/2 Mile East
44	KS3000000043540	1/4 - 1/2 Mile NW
J45	KS3000000042975	1/4 - 1/2 Mile ENE
J46	KS300000042976	1/4 - 1/2 Mile ENE
K47	KS3000000041525	1/4 - 1/2 Mile SSE
K48	KS3000000041524	1/4 - 1/2 Mile SSE
K49	KS300000041528	1/4 - 1/2 Mile SSE
K50	KS3000000041528.	1/4 - 1/2 Mile SSE
K51	KS3000000041527	1/4 - 1/2 Mile SSE
L52	KS300000042549	1/4 - 1/2 Mile West
L53	KS300000042548	1/4 - 1/2 Mile West
L54	KS300000042547	1/4 - 1/2 Mile West
L55	KS300000042552	1/4 - 1/2 Mile West
L56	KS300000042551	1/4 - 1/2 Mile West
L57 M58	KS3000000042550	1/4 - 1/2 Mile West
M59	KS3000000042054	1/4 - 1/2 Mile ESE
M60	KS300000042055 KS300000042056	1/4 - 1/2 Mile ESE
M61	KS3000000042056 KS3000000042051	1/4 - 1/2 Mile ESE 1/4 - 1/2 Mile ESE
M62	KS3000000042051	1/4 - 1/2 Mile ESE
M63	KS3000000042052	1/4 - 1/2 Mile ESE
M64	KS300000042057	1/4 - 1/2 Mile ESE
M65	KS300000042061	1/4 - 1/2 Mile ESE
M66	KS300000042062	1/4 - 1/2 Mile ESE
M67	KS300000042063	1/4 - 1/2 Mile ESE
M68	KS3000000042058	1/4 - 1/2 Mile ESE
M69	KS3000000042059	1/4 - 1/2 Mile ESE
M70	KS3000000042060	1/4 - 1/2 Mile ESE
N71	KS3000000042979	1/4 - 1/2 Mile WNW
N72	KS3000000042980	1/4 - 1/2 Mile WNW
N73	K\$300000042977	1/4 - 1/2 Mile WNW
N74	KS300000042978	1/4 - 1/2 Mile WNW
N75	KS3000000042981	1/4 - 1/2 Mile WNW
N76	KS3000000042984	1/4 - 1/2 Mile WNW
N77	KS3000000042985	1/4 - 1/2 Mile WNW
N78	KS300000042982	1/4 - 1/2 Mile WNW
N79	KS3000000042983	1/4 - 1/2 Mile WNW
O80	KS3000000041514	1/4 - 1/2 Mile SW

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction				
Distance Elevation			Database	EDR ID Number
1 NNW 0 - 1/8 Mile Higher			KS WELLS	KS3000000042745
Well id:	363696	County:	Sedgwick	
Township:	27	Twn dir:	s	
Range:	1	Range dir:	E	
Section:	28	Spot:	NW	
Longitude:	-97.3306	Latitude:	37.67522	
Owner:	Cantwell, Linda	Well use:	Lawn and Garden -	domestic only
Comple dat:	02-May-2005	Status:	PLUGGED	•
Other id:	Not Reported	Dwr number:	Not Reported	
Well depth:	50	Elev:	Not Reported	
Static dep:	20	Est yield:	Not Reported	
Driller:	Linda K Cantwell			
Direct1: Site id:	1214 Ida, Wichita KS3000000042745			
A2 ESE 0 - 1/8 Mile Higher			KS WELLS	K83000000042537
- '		_		
Well id:	67217	County:	Sedgwick	
Township:	27	Twn dir:	. s	
Range: Section:	1	Range dir:	E	
Longitude:	28 -97.32944	Spot:	NWSENW	
Owner:	City of Wichita	Latitude: Well use:	37.67432	
Comple dat:	16-Dec-1991	Status:	Monitoring well/obse CONSTRUCTED	rvation/piezometer
Other id:	Not Reported	Dwr number:	Not Reported	
Well depth:	24	Elev:	Not Reported	
Static dep:	Not Reported	Est yield:	Not Reported	
Driller:	Geotechnical Services, Inc.	J.G.G.	nor rapolad	
Direct1: Site id:	815 E. GILBERT WICHITA K\$3000000042537			
A3 ESE 0 - 1/8 Mile Higher			KS WELLS	K\$3000000042536
_	07010			
Well id: Township:	87216 27	County:	Sedgwick	
rownsnip: Range:	1	Twn dir.	S	
Range: Section:	1 28	Range dir: Spot:	E NWSENW	
Longitude:	-97.32944	Spot: Latitude:	37.67432	
Owner:	City of Wichita	Well use:	Monitoring well/obse	nustion/hieromoto-
Comple dat:	16-Dec-1991	Status:	CONSTRUCTED	4 4 a a compression properties
	Not Reported	Dwr number:	Not Reported	
Other id:				
Other id: Well depth:	33	Elev:	Not Reported	

TC2042731.2s Page A-26

SITE NAME: Standard Products, Inc ADDRESS: 650 East Gilbert Street Wichita KS 67211 LAT/LONG: 37.6747 / 97.3306 CLIENT: SCS Engineers
CONTACT: Lindsay James
INQUIRY #: 2042731.2s
DATE: October 02, 2007 7:47 am

Copyright © 2007 EDA, Inc. © 2007 Tels Allas Ref. 07/2005

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS

Driller: Direct1: Geotechnical Services, Inc. 815 E GILBERT WICHITA

Site id:

KS3000000042538

A4 ESE 0 - 1/8 Mile

KS WELLS County:

Twn dir.

Spot:

Elev:

Spot:

Latitude:

Status:

Est yield:

Elev:

Well use:

Dwr number:

Range dir:

Latitude:

Well use:

Well id:

Comple dat:

333477 Township 27 Renge: Section: 28 -97.32944 Longitude: Owner:

City of Wichita 03-Mer-2002 MW A4

Other id: Well depth: Static dep: Not Reported Geotechnical Services, Inc. Driller:

Direct1: Site id: KS3000000042539

KS WELLS

Sedgwick

NW SE NW

CONSTRUCTED

Not Reported

Not Reported

Not Reported

37.67432

Ε

Sedgwick s NW SE NW 37.67432

Monitoring well/observation/piezometer

KS3000000042539

K83000000042538

Status: CONSTRUCTED Dwr number: Not Reported Not Reported Est yield: Not Reported

SW of Santa Fe & Gilbert, Wichite

A5 ESE 0 - 1/8 Mile Higher

Well id: 329204 County: Township: 27 Twn dir: Renge dir: Range: 1

28 Section: Longitude: -97.32944 City of Wichita Owner: 25-Apr-2002 Comple dat: MW 935 B

Other id: Well depth: 21 Static dep: Not Reported Driller: Environmental Priority Service, inc.

from St. Francis & Gilbert: 269' E, 5' N (9358) KS3000000042538

Direct1: Site id:

> KS WELLS KS3000000042959

Monitoring well/observation/piezometer

86 NW 1/8 - 1/4 Mile Well id:

Static dep:

309591 Township: 27 Range: Section: Longitude: -97.33174 Harcros Chemicals, Inc. Owner: Comple dat: 02-Dec-1999 Other Id: MW 3S Well depth: 22

County: Twn dir: Range dir: Spot: Latitude: Well use: Status: Dwr number:

Flev:

Est yield:

Sedgwick S SE NW NW 37.67611

Monitoring well/observation/piezometer CONSTRUCTED Not Reported Not Reported Not Reported

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS **RADON**

AREA RADON INFORMATION

State Database: KS Radon

Radon Test Results

Total Sites Avg. (pCl/L) Mex. > 4.0 pCi/L SEDGWICK 1798 3.12 429

Federal EPA Radon Zone for SEDGWICK County: 2

Note: Zone 1 Indoor average level > 4 pCl/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 Indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 67211

Number of sites tested: 10

Area % <4 pCi/L % 4-20 pCi/L % >20 pCl/L Average Activity Living Area - 1st Floor 2.600 pCi/L 100% 0% 0% Not Reported Living Area - 2nd Floor Not Reported Not Reported Not Reported Basement 2.480 pCVL 90% 10% 0%

Appendix C KGS Well Data

Hydrology

Township: 27S, Range: 1E, Section: 28
Select location of well to view details.
Click on column heading to sort.

155 records. C	Only 50 records d	isplayed :	at a time-	sort will	affect ALL records.				
				View	page: 1 <u>2 3 4</u>				
T-R-S	Owner	Well Depth Ascend. Desc.	Static Water Level Ascend, Desc.	Est. Yield Ascend. Desc.	Well Use	Other ID	Action Taken	Completion Date Ascend. Desc.	Scan?
Sec. 28 SWNWNW	OLDEN	37 ft.	17 ft.	60 gpm.	Lawn and Garden - domestic only		Constructed	27-Jul- 1985	
Sec. 28 SENWNW	WOODS	33 ft.	18 ft.	0 gpm.	Lawn and Garden - domestic only		Constructed	09-Jul- 1986	
Sec. 28 NW NE SW	Walt Keeler Co., Inc.	40 ft.	17 ft.	0 gpm.	Lawn and Garden - domestic only		Constructed	25-Jun- 1986	Scan
Sec. 28 SESESE	LOCAL LOAN	45 ft.	15 ft.		Monitoring well/observation/piezometer		Constructed	03-Aug- 1990	
Sec. 28 SWSWSE	FORBES FIELD	28 ft.	17 ft.		Monitoring well/observation/piezometer		Constructed	19-Apr- 1990	
Sec. 28 SENENW	FORBES FIELD	23 ft.	15 ft.		Monitoring well/observation/piezometer		Constructed	19-Apr- 1990	
Sec. 28 SENENW	FORBES FIELD	33 ft.	14 ft.		Monitoring well/observation/piezometer		Constructed	19-Apr- 1990	
Sec. 28 NENENW	FORBES FIELD	22 ft.	16 ft.		Monitoring well/observation/piezometer		Constructed	18-Apr- 1990	
Sec. 28 NENENW	FORBES FIELD	36 ft.	16 ft.		Monitoring well/observation/piezometer		Constructed	18-Apr- 1990	
Sec. 28 SESWNW	IRON	40 ft.	15 ft.		Injection well/air sparge (AS)/shallow		Constructed	18-Apr- 1985	
Sec. 28 SESESW	FORBES FIELD	27 ft.	17 ft.		Monitoring well/observation/piezometer		Constructed	23-Apr- 1990	
Sec. 28 NESESW	FORBES FIELD	29 ft.	18 ft.		Monitoring well/observation/piezometer		Constructed	20-Apr- 1990	
Sec. 28 SENENW	KDHE	22 ft.	16 ft.		Monitoring well/observation/piezometer		Constructed	23-Apr- 1990	
Sec. 28 SENENW	KDHE	36 ft.	16 ft.		Monitoring well/observation/piezometer		Constructed	23-Apr- 1990	
Sec. 28 SWNWNE	LAUPE	28 ft.	12 ft.	15 gpm.	Domestic		Constructed	20-May- 1988	
Sec. 28 NWNWNW	MID KANSAS FED	23 ft.	14 ft.		Monitoring well/observation/piezometer		Constructed	17-Aug- 1990	
Sec. 28 SESENE	PRANGE	23 ft.	12 ft.	0 gpm.	Lawn and Garden - domestic only		Plugged	07-Dec- 1990	
Sec. 28 NWSENW	City of Wichita	33 ft.			Monitoring well/observation/piezometer		Constructed	16-Dec- 1991	
Sec. 28 NWSENW	City of Wichita	24 ft.			Monitoring well/observation/piezometer		Constructed	16-Dec- 1991	
Sec. 28					Monitoring			24-Nov-	

NENESW	City of Wichita	32 <u>f</u> t.	0 ft.		well/observation/piezometer	Constructed	1991
Sec. 28 NENESW	City of Wichita	22 ft.	0 ft.		Monitoring well/observation/piezometer	Constructed	24-Nov- 1991
Sec. 28 NENESE	NICHOLS	32 ft.	16 ft.	0 gpm.	Lawn and Garden - domestic only	Plugged	08-Oct- 1992
Sec. 28 NCNCNE	DAVIS	15 ft.	6 ft.	0 gpm.	Lawn and Garden - domestic only	Plugged	01-Nov- 1992
Sec. 28 NENWSE	LEACHMAN	25 fl.	15 ft.	0 gpm.	Lawn and Garden - domestic only	Plugged	14-Apr- 1993
Sec. 28 SWSWNE	MAI	21 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 SWSWNE	MAI	21 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 SWSWNE	MAI	21 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 SWSWNE	MAI	20 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 SWSWNE	MAI	21 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 SWSWNE	MAI	20 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	20 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	20 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	20 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	20 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	20 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	20 ft.	12 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	15 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 NWNWSE	STEWART	17 ft.	13 ft.		Monitoring well/observation/piezometer	Constructed	08-Jun- 1993
Sec. 28 SWNWSE	LACEY	29 ft.		0 gpm.	Lawn and Garden - domestic only	Constructed	01-Jul- 1988
Sec. 28 NWSWNE	HEPHNER	20 ft.	15 ft.		Monitoring well/observation/piezometer	Constructed	24-Mar- 1993
Sec. 28 NWSWNE	HEPHNER	20 ft.	14 ft.		Monitoring well/observation/piezometer	Constructed	24-Mar- 1993
Sec. 28 SESENE	UNDERWOOD	26 ft.		0 gpm.	Lawn and Garden - domestic only	Constructed	18-Jun- 1986
Sec. 28 NWSWSW	IMMANUEL BPTST	40 ft.	10 ft.	0 gpm.	Lawn and Garden - domestic only	Constructed	05-Oct- 1993
Sec. 28 SWNWSE	ORVOM.	35 ft.	17 ft.	0 gpm.	Lawn and Garden - domestic only	Constructed	28-Mar- 1994
			<u> </u>		7/		1

155 records. Only 50 records displayed at a time--sort will affect ALL records.

Sec. 28 SESESE	Amoco Oil Co.	20.6 ft.	14.09 ft.	Monitoring well/observation/piezomete	г	Constructed	08-May- 1995		
Sec. 28 NWNWSW	City of Wichita	23 ft.	15.59 ft.	Monitoring well/observation/piezomete	r	Constructed	07-Aug- 1995		
Sec. 28 NWNWSW	City of Wichita	23 ft.	15.83 ft.	Monitoring well/observation/piezomete	r	Constructed	07-Aug- 1995		
Sec. 28 NWNWSW	City of Wichita	22 ft.	15.89 ft.	Monitoring well/observation/piezomete					
Sec. 28 NWNWSW	City of Wichita	22.5 ft.	15.8 ft.	Monitoring well/observation/piezomete	r	Constructed	08-Aug- 1995		
Sec. 28 NWNWSW	City of Wichita	22.5 ft.	15.55 ft.	Monitoring well/observation/piezomete	r	Constructed	07-Aug- 1995		
View page: 1 2 3 4									

Kansas Geological Survey
Comments to webadmin@kgs.ku.edu
URL=http://www.kgs.ku.edu/Magellan/WaterWell/index.html
Display Programs Updated July 29, 2004
Data added continuously.

	Detabase	Township: 27S, Range: 1E, Section: 2 Select location of well to view details. Click on column heading to sort.	THIYE Data	Map Well in This An
Hydrology	Quary		10 1110	in This A

View page: 1 || 2 || 3 || 4

T-R-S	<u>Owner</u>	Well Depth Ascend.	Static Water Level Ascend.	Est. Yield Ascend.	Well Use	Other ID	Action Taken	Completion Date <u>Ascend.</u>	Scan?
Sec. 28 NWNWSW	City of	Desc. 22.5 ft.	Desc.	Desc.	Monitoring well/observation/piezometer			Desc. 08-Aug- 1995	
Sec. 28 NWNWSW	City of	22.5 ft.	15.5 ft.		Monitoring well/observation/piezometer		Constructed	08-Aug- 1995	
Sec. 28 SESWNW	City of Wichita	31.5 ft.	16 ft.		Monitoring well/observation/piezometer			09-Jul- 1995	
Sec. 28 NENENW	City of Wichita	28.5 ft.	14.1 ft.		Monitoring well/observation/piezometer		Constructed	09-Jul- 1995	
Sec. 28 SWNESE	WHITAKER	38 ft.	14 ft.	0 gpm.	Lawn and Garden - domestic only		Plugged	28-Aug- 1995	
Sec. 28 SWSWSE	FORE	21 ft.	6.5 ft.	0 gpm.	Lawn and Garden - domestic only		Plugged	25-Oct- 1995	
Sec. 28 NWNENE	HARPER	65 ft.	21 ft.	0 gpm.	Other		Constructed	12-Jan- 1996	
Sec. 28 SWNESW	PIERCE	24 ft.	11 ft.		Air Conditioning		Plugged	07-Mar- 1996	
Sec. 28 NWSWNE	HILLIGOS	33 ft.	16 ft.	0 gpm.	Lawn and Garden - domestic only		Plugged	12-Jul- 1996	
Sec. 28 SWNWNE	PILLEY	29 ft.	17 ft.	0 gpm.	Lawn and Garden - domestic only		Plugged	14-Jun- 1996	
Sec. 28 NWNWSE	Total Petroleum Inc.	21 ft.	15.56 ft.		Monitoring well/observation/piezometer		Constructed	11-Oct- 1996	
Sec. 28 SWSWNE	Total Petroleum Inc.	21 ft.	15.35 ft.		Monitoring well/observation/piezometer		Constructed	11-Oct- 1996	
Sec. 28 NWNWSE	Total Petroleum Inc.	21 ft.	15.71 ft.		Monitoring well/observation/piezometer		Constructed	11-Oct- 1996	
Sec. 28 NWNWSE	Total Petroleum Inc.	21 ft.	15.56 ft.		Monitoring well/observation/piezometer		Constructed	11-Oct- 1996	
Sec. 28 NWNWSE	Total Petroleum Inc.	21 ft.	16.18 ft.		Monitoring well/observation/piezometer		Constructed	11-Oct- 1996	
Sec. 28 SWNWSE	Total Petroleum Inc.	21 ft.	15.45 ft.		Monitoring well/observation/piezometer		Constructed	11-Oct- 1996	
Sec. 28 SENWSE	MULHAGEN	25 ft.	16 ft.	0 gpm.	Lawn and Garden - domestic only		Plugged	27-Dec- 1996	
Sec. 28 SESESE	MCCLURG	35 ft.	12 ft.	0 gpm.	Lawn and Garden - domestic only		Plugged	04-Nov- 1997	
Sec. 28 SE SE SE	Bill Naill	13 ft.	0 ft.		Recovery/Soil Vapor Extraction/Soil Vent	VEW 2	Constructed	11-Jan- 1999	Scan
<u></u>)))))))})[)

Sec. 28 SE SE SE	Bill Naill	13 ft.	0 ft.		Recovery/Soil Vapor Extraction/Soil Vent	VEW 3	Constructed	11-Jan- 1999	<u>Scan</u>
Sec. 28 SE SE SE	Bill Naill	13 ft.	0 ft.		Recovery/Soil Vapor Extraction/Soil Vent	VEW 1	Constructed	11-Jan- 1999	Scan
Sec. 28 SE SE NE	Curtis & Cheryl Kickel	23 ft.	15 ft.	- 11	Lawn and Garden - domestic only		Plugged	02-Dec- 1998	Scan
Sec. 28 SW SW SW	Tim Blakely	27 ft.	13 ft.		Lawn and Garden - domestic only		Plugged	10-Mar- 1999	Scan
Sec. 28 NW NW SE	Ultramar Diamond Shamrock	14.5 ft.			Recovery/Soil Vapor Extraction/Soil Vent	SVE I	Constructed	18-Sep- 1998	Scan
Sec. 28 NW NW SE	Kenneth Stewart	15 ft.	0 ft.		Monitoring well/observation/piezometer	MW 7B	Plugged	18-Sep- 1998	Scan
Sec. 28 NW NW SE	Kenneth Stewart	14.5 ft.			Monitoring well/observation/piezometer	SVE 2	Constructed	18-Sep- 1998	Scan
Sec. 28 NW NW SE	Kenneth Stewart	20 ft.			Monitoring . well/observation/piezometer	PMW 1	Constructed	18-Sep- 1998	Scan
Sec. 28 NW NW SE	Kenneth Stewart	14.5 ft.			Monitoring well/observation/piezometer	SVE 3	Constructed	18-Sep- 1998	Scan
Sec. 28 NW NW SE	Kenneth Stewart	20 ft.			Monitoring well/observation/piezometer	PMW 3	Constructed	18-Sep- 1998	Scan
Sec. 28 SW NW SE	Kenneth Stewart	20 ft.			Monitoring well/observation/piezometer	PMW 4	Constructed	18-Sep- 1998	Scan
Sec. 28 NE NE SW	Kenneth Stewart	20 ft.			Monitoring well/observation/piezometer	PMW 2	Constructed	18-Sep- 1998	Scan
Sec. 28 NW NW SW	Broadway Christian Church	34 ft.	19 ft.		Air Conditioning		Plugged	07-Apr- 1999	Scan
Sec. 28 NE NW NW	Donlevy Lithographics, Inc.	23 ft.			Monitoring well/observation/piezometer	P 2	Constructed	16-Jun- 1999	<u>Scan</u>
Sec. 28 NE NW NW	Donlevy Lithographic, Inc.	23 ft.			Monitoring well/observation/piezometer	P 3	Constructed	16-Jun- 1999	<u>Scan</u>
Sec. 28 NE NW NW	Donlevy Lithographics, Inc.	23 ft.			Monitoring well/observation/piezometer	P 1	Constructed	16-Jun- 1999	Scan
Sec. 28 SE SW SE		20 ft.	15 ft.		Lawn and Garden - domestic only		Plugged	25-Aug- 1999	Scan
Sec. 28 NE NW NW	Chester Kappelman Group	24 ft.	12 ft.		Lawn and Garden - domestic only		Plugged	31-Aug- 1999	Scan
Sec. 28 NE NW NW	Boge Iron	35 ft.	15 ft.		Injection well/air sparge (AS)/shallow		Constructed	27-Aug- 1999	Scan

Sec. 28 NW NE SW	Mark Cox			Lawn and Garden - domestic only		Plugged	24-Jul- 1999	Scan
Sec. 28 SE NW NW	Harcros Chemicals, Inc.	22 ft.		Monitoring well/observation/piezometer	MW 2S	Constructed	02-Dec- 1999	Scan
Sec. 28 SE NW NW	Harcros Chemicals, Inc.	22 ft.	16 ft.	Monitoring well/observation/piezometer	MW 3S	Constructed	02-Dec- 1999	<u>Scan</u>
Sec. 28 SE NW NW	Harcros Chemicals, Inc.	32 ft.		Monitoring well/observation/piezometer	MW 1D		02-Dec- 1999	Scan
Sec. 28 SE NW NW	Harcros Chemicals, Inc.	32 ft.		Monitoring well/observation/piezometer	MW 3D		02-Dec- 1999	Scan
Sec. 28 SE NW NW	Harcros Chemicals, Inc.	33 ft.		Monitoring well/observation/piezometer	MW 2D	Constructed	02-Dec- 1999	Scan
Sec. 28 SE NW NW	Harcros Chemicals, Inc.	22 ft.		Monitoring well/observation/piezometer	MW IS	Constructed	02-Dec- 1999	Scan
Sec. 28 SE SE SE	KDHE BER	21 ft.	153 ft.	Monitoring well/observation/piezometer		Constructed	27-Oct- 1999	Scan
Sec. 28 SE SE SE	KDHE-BER	39.6 ft.	13.8 ft.	Monitoring well/observation/piezometer	MW IB	Constructed	28-Oct- 1999	Scan
Sec. 28 SE SE SE	KDHE BER	50 ft.	13 ft.	Monitoring well/observation/piezometer	MW 3C	Constructed	29-Oct- 1999	Scan
Sec. 28 SE SE SE	KDHE-BER	34.54 ft.	13.43 ft.	Monitoring well/observation/piezometer	MW 2C	Constructed	28-Oct- 1999	Scan
Sec. 28 SE SE SE	KDGE BER	21 ft.	13 ft.	Monitoring well/observation/piezometer		Constructed	28-Oct- 1999	Scan
				View page: 1 2 3 4				

Kansas Geological Survey
Comments to webadmin@kgs.ku.edu
URL=http://www.kgs.ku.edu/Magellan/WaterWell/index.html
Display Programs Updated July 29, 2004
Data added continuously.

Hydrology

Township: 27S, Range: 1E, Section: 28
Select location of well to view details.
Click on column beging to see Click on column heading to sort.

Save Data Map Wells to File in This Area

	155 records. Only 50 records displayed at a timesort will affect ALL records.										
155 19	cords. Only	o recora	s displaye		Niew page: 1 2 3 4	as.					
T- R-S	Owner	Well Depth Ascend. Desc.	Static Water Level Ascend. Desc.	Est. Yield <u>Ascend.</u> <u>Desc.</u>	Well Use	Other ID	Action Taken	Completion Date <u>Ascend.</u> <u>Desc.</u>	Scan?		
Sec. 28 SE SE SE SE	KDHE-BER	25 ft.	14.02 ft.		Monitoring well/observation/piezometer	MW 1A	Constructed	28-Oct- 1999	Scan		
Sec. 28 SE SE SE	KDHE BER	38 ft.	13 ft.		Monitoring well/observation/piezometer	MW 2B	Constructed	28-Oct- 1999	<u>Scan</u>		
Sec. 28 SE SE SE	KDHE BER	24 ft.	13 ft.		Monitoring well/observation/piezometer	MW 2A	Constructed	28-Oct- 1999	<u>Scan</u>		
Sec. 28 NW NW SW	City of Wichita	22.5 ft.	17.31 ft.		Monitoring well/observation/piezometer	MW 6	Plugged	08-Mar- 2000	Scan		
Sec. 28 SW NW SW	Joel Assoc. Inc.	25 ft.	5 ft.		Lawn and Garden - domestic only		Plugged	20-Apr- 2000	Scan		
Sec. 28 SE SE NW	Larry Underhill	30 ft.	15 ft.		Lawn and Garden - domestic only		Plugged	08-Jun- 2000	Scan		
Sec. 28 SW NE SE	Larry Huffstetler	19 ft.	14 ft.		(unstated)/abandoned		Plugged	04-Feb- 2001	<u>Sçan</u>		
<u>Sec.</u> 28	Larry				Lawn and Garden -			03-Feb-			

SW NE SE	Huffstetler	15 ft.	9 ft.	domestic only		Plugged	2001	Scan
Sec. 28 NE NE SW	City of Wichita	13 ft.	6 ft.	(unstated)/abandoned		Plugged	14-Jun- 2001	<u>Scan</u>
Sec. 28 XE XE XE SW	City of Wichita	18 ft.	5 ft.	(unstated)/abandoned		Plugged	14-Jun- 2001	Scan
Sec. 28 SE SE SE SE	Marjorie Fleeman	19 ft.	11 ft.	Lawn and Garden - domestic only		Plugged	14-Aug- 2001	Scan
Sec. 28 SE SE SE	Marjorie & Dan Fleeman	23 ft.	12 ft.	Lawn and Garden - domestic only		Plugged	14-Aug- 2001	Scan
Sec. 28 SW NW SE	Babcock, Arline	13 ft.		(unstated)/abandoned		Plugged	08-Aug- 2001	Scan
Sec. 28 SW SW NE	Stephen McCormack	18.5 ft.	11 ft.	Lawn and Garden - domestic only		Plugged	15-Aug- 2001	Scan
	Grede Foundries, Inc.	35.5 ft.	5.5 ft.	Air Conditioning		Constructed	26-Aug- 1975	Scan
Sec. 28 NE SW	City of Wichita	33 ft.		Recovery/Soil Vapor Extraction/Soil Vent	MW Bi	Constructed	07-Sep- 2001	Scan
Sec. 28 SE NW	City of Wichita	33 ft.		Recovery/Soil Vapor Extraction/Soil Vent	MW A4	Constructed	19-Sep- 2001	Scan
Sec. 28 NE	City of Wichita	34 ft.	12 ft.	Recovery/Soil Vapor Extraction/Soil Vent	MW B2	Constructed	27-Aug- 2001	Scan

NW	}) }	l II	1		} J	ı ı	l l
Sec. 28	City of Wichita	21.96 ft.		Monitoring well/observation/piezometer	MW 551B	Constructed	27-Feb- 2002	Scan
Sec. 28 SE SE NW	City of Wichita	34.76 ft.		Monitoring well/observation/piezometer	MW 552A	Constructed	03-Mar- 2002	<u>Scan</u>
Sec. 28 SE SE NW	City of Wichita	23.18 ft.		Monitoring well/observation/piezometer	MW 552 B	Constructed	03-Mar- 2002	<u>Scan</u>
Sec. 28 NW NW SE	City of Wichita	37.59 ft.		Monitoring well/observation/piezometer	MW 554A	Constructed	03-Mar- 2002	Scan
Sec. 28 NW NW SW	City of Wichita	23.08 ft.		Monitoring well/observation/piezometer	MW 554B	Constructed	03-Mar- 2002	Scan
Sec. 28 SE SE SE SE SE SE SE SE SE SE SE SE SE	City of Wichita	39.12 ft.		Monitoring well/observation/piezometer	MW 553A	Constructed	27-Feb- 2002	Scan
Sec. 28 SE SE SW	City of Wichita	23.48 ft.		Monitoring well/observation/piezometer	MW 553B	Constructed	27-Feb- 2002	Scan
Sec. 28 ENW SE	City of Saline	35.59 ft.		Monitoring well/observation/piezometer	MW 577A	Constructed	27-Feb- 2002	Scan
Sec. 28 SE SW SW	City of Wichita	36.38 ft.		Monitoring well/observation/piezometer	MW 576A	Constructed	27-Feb- 2002	Scan
Sec. 28 SE	City of	24.94		Monitoring	MW	Constructed	27-Feb-	Scan

<u>sw</u> <u>sw</u>	Wichita	ft.		 well/observation/piezometer	576B		2002	
Sec. 28 NW NW SE	City of Wichita	21 ft.		Monitoring well/observation/piezometer	MW 910B	Constructed	25-Apr- 2002	Scan
Sec. 28 SE NE NW	City of Wichita	20.3 ft.		Monitoring well/observation/piezometer	MW 946B	Constructed	25-Apr- 2002	<u>Scan</u>
Sec. 28 NW SE NW	City of Wichita	21 ft.		Monitoring well/observation/piezometer	MW 935 B	Constructed	25-Apr- 2002	<u>Scan</u>
NW	Fuller, Bernadean and Norman	25 ft.	20 ft.	Lawn and Garden - domestic only		Plugged	06-Apr- 2002	<u>Scan</u>
Sec. 28 NE SW SW	Peterson, Maynard and Dorothy	22 ft.	12 ft.	Lawn and Garden - domestic only		Plugged	15-Jul- 2002	<u>Scan</u>
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	City of Wichita	34 ft.		Monitoring well/observation/piezometer	MW A4	Constructed	03-Mar- 2002	Scan
Sec. 28 NE SE SE SW	City of Wichita	32.5 ft.		Monitoring well/observation/piezometer	MW Bl	Constructed	03-Mar- 2002	<u>Scan</u>
Sec. 28 担 担 担 担 担 担 担 担	City of Wichita	37 ft.	·	Monitoring well/observation/piezometer	MW B2	Constructed	03-Mar- 2002	Scan
Sec. 28 SW SW NE	Tom Mai	23 ft.	15.92 ft.	Monitoring well/observation/piezometer	MW 7A	Constructed	11-Mar- 2003	Scan
Sec. 28					#			

SW SW IE	Tom Mai	23 ft.	16.32 ft.		Monitoring well/observation/piezometer	MW 8A	Constructed	11-Mar- 2003	Scan
Sec. 28 SW SW NE	Tom Mai	23·ft.	15.82 ft.		Monitoring well/observation/piezometer	MW 9A	Constructed	11-Mar- 2003	Sçan
Sec. 28 SW SW NE	Tom Mai	23 ft.	15.78 ft.		Monitoring well/observation/piezometer	MW 10A	Constructed	11-Mar- 2003	Scan
Sec. 28 SW SW SE	Tom Mai	23 ft.	16.02 ft.		Monitoring well/observation/piezometer	MW 11A	Constructed	11-Mar- 2003	Scan .
Sec. 28 SW NW SE	Kenneth Stewart	20 ft.	15.21 ft.		Monitoring well/observation/piezometer	MW 12B	Plugged	12-Mar- 2003	Scan
Sec. 28 SW NW SE	Kenneth Stewart	23 ft.	15.7 ft.		Monitoring well/observation/piezometer	MW 12BR	Constructed	12-Mar- 2003	Scan
Sec. 28 SW NW SE	Kenneth Stewart	23 ft.	17.76 ft.		Monitoring well/observation/piezometer	MW 13B	Constructed	12-Mar- 2003	Scan
Sec. 28 SW NW SE	Kenneth Stewart	25 ft.	16.91 ft.		Monitoring well/observation/piezometer	MW 14B	Constructed	13-Mar- 2003	Scan
Sec. 28 SW NW SE	Kenneth Stewart	25 ft.	17.92 ft.		Monitoring well/observation/piezometer	MW 15B	Constructed	13-Mar- 2003	Scan
Sec. 28 SW NW SE	Kenneth Stewart	25 ft.	19.09 ft.		Monitoring well/observation/piezometer	MW 16B	Constructed	12-Mar- 2003	Scan
Sec.) 					

	W W	Mike Montague	23 ft.	19 ft.		Lawn and Garden - domestic only			16-Aug- 2003	<u>Scan</u>
SANS	8 W W	Lonnie Heplner	20 ft.	,		Monitoring well/observation/piezometer	MW 2	IPhinopad I	01-Dec- 2003	Scan
SANSA	8 W W	Lonnie Heplner	20 ft.			Monitoring well/observation/piezometer	MW 10	Physical	01-Dec- 2003	Scan
	View page: 1 2 3 4									

Kansas Geological Survey
Comments to webadmin@kgs.ku.edu
URL=http://www.kgs.ku.edu/Magellan/WaterWell/index.html
Display Programs Updated July 29, 2004
Data added continuously.

KGS--Water Wells Query Answer--Township: 27S, Range: 1E, Section: 28

Page 1 of 1

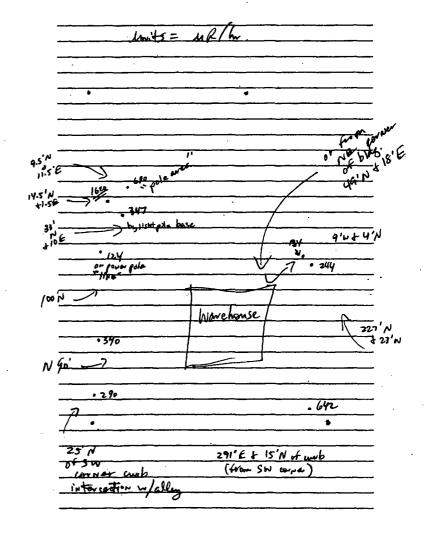
KGS Hydrology

Weter Well
Datebese
Query

Township: 27S, Range: 1E, Section: 28
Select location of well to view details.
Click on column heading to sort.

Save Data to File

Map Wells in This Area


155 re	55 records. Only 50 records displayed at a timesort will affect ALL records.								
	View page: 1 2 3 4								
T- R-S	<u>Owner</u>	Well Depth Ascend. Desc.	Static Water Level Ascend. Desc.	Est. Yield <u>Ascend.</u> <u>Desc.</u>	Well Use	Other ID	Action Taken	Completion Date Ascend. Desc.	Scan?
III NI VAZZI	Lonnie Heplner	20 ft.	·		Monitoring well/observation/piezometer	MW 12	Plugged	01-Dec- 2003	Scan
NW	Cantwell, Linda	50 ft.	20 ft.		Lawn and Garden - domestic only		Plugged	02-May- 2005	PDF
Sec. 28 SE SW NW	Orebaush, Mr.	36 ft.	16 ft.		Lawn and Garden - domestic only		Constructed	15-Mar- 2006	PDF
Sec.	Stewart, Kenneth	9.1 ft.			Recovery/Soil Vapor Extraction/Soil Vent	SVE 2	Plugged	17-Apr- 2006	PDF
Sec. 28 NW NW SE	Stewart, Kenneth	12.61 ft.			Recovery/Soil Vapor Extraction/Soil Vent	SVE 3	Plugged	17-Apr- 2006	PDF
				*	View page: 1 2 3 4				

Kansas Geological Survey
Comments to webadmin@kgs.ku.edu
URL=http://www.kgs.ku.edu/Magellan/WaterWell/index.html
Display Programs Updated July 29, 2004
Data added continuously.

Appendix D

Field Notes

7/17/07 Want by Four P Equipment (e. Fac. + Browned signed access for property from Share Phillips.
Co. Fuc. A promoved signed
wess for property from
Share Phillips.
Dusite & 1300.
Took background surface realing west of proporty-edge in alley aresidence to the N. + the Guadalupe (limited to the South
west of property-edge in alle
area botation a residence to
the N. + the Guadalupe Clivic
to the South
= 13 nR/hr. Calibrated Ludlum = 573 nR/hr. + veclecked backsrough = 13 nR/hr.
backsrough = 13 mR/hr.
Finishal walkover around 15:00
Numerous spots over 40 vaR/hr
Decider to paint high souts of
Decided to paint high sports of
Seer map for verdings

07/27/07 Calibrate Ladlum = 538 ul/hr. 14'F OF NE corner of chinic = hot spot = 1700 mR/hr. Grid Sw area (Lhot got 15' F OF NE corner of clivic 14.75 N = hot cost = 729 uR/hr. also from NE corner 12-13'E + 115'N Solo Lot spot 124 w R/hor. Small vadius LI' of vadiction from SE corner of clinic 16'E & 7'N sala host spot 290 mR/hm. radius = 1-2' from NE corder of worshouse 27'E+ 39'N = 338 MR/M. + 20 E + 44'N from war = 184 unflag. (was 244 + 134) ON SE corner was of property from E end of unb 16.N + 5 F hat sort = 522 mR/ha (was 642)

8/01/07
6/01/07 drapped off material
<u> </u>
(al. Ludlum = 550 mR/hr.
best ground = 11 mp/m. in bushyard area
NW grit pt. = 18-17
expanded NW grid & Sw grill
Storted SE Sxid to hot!
8/06/07 (alibrate Ludlum = 530 mR/R har ground = 12 mR/hr. (SE corner were by RR)
(SE course by RR)
worked or SE grid expansion
worked or SE stid expansion
08/16/07 onsite at = 13:00
08/16/07 onsite at = 13:00
08/16/07 onsite at = 13:00 Calibrated Luglan = 521 mp/hr.
08/16/07 onsite at = 13:00

Page

Page -5-Collected SPI #1 0.6" Wast to N. Bekgrad aver = 12 uR/hr. N. 37. 67 595 13:25 W-097.33106 [NW area) 13:30 0-6" 13:35 east W-097. 33054 N 37.67464 D-6" 13:40 Bg-2 west N. 37.67454 W-097, 33099

8/20/07 X	'RF
Reset clock or	IPAC - day at time
Standardization - 0	k resolution - 204
2710 High Standard	/
	2879 ZN 6871 726±40 Pb 5162±78
Bak 971 Cr 6 Az 670	325 SOCIS
SPF P6 BY66MD 1) 159±9	A-5 -18
06" 2) 16949 6	18
Drk. Brow. Sl.	clayer loca
Bg-1 1) 122±8 6 0-6" 2) 171±8 6 13:55 3) 129±8 2 00K, Brww. 51. C	-16 -17 -16 layen I san
05-2 1) 1972 10 2 14" 2) 1972 10 2	Zo 2 o
#1 2) 97±7 < 10:10 3) 82±7 <	=15 -14 +14 [on w/(s. svew. piees

PIP Ra-226 0.0 4-6" 0.0 TO 22' 17.08 SWLT VOC'S = 11:40 sware

.01	P10 R6-226	•
SPI	0-2' void 10-17 MAYON	
10-4	2-4 (2-31 fill 6" 130 sk/pr.	
12:35	(Sd. + glass pieces)	· . :
	0.0 3" up from bottom (IN clay) - 600 wh/h	. .
	4-6' 1	
4-8'	250n 256	
	6-81 0.0	_
·	50	
	V.O 56	
	hole from macrocone #2 (4-8') smells sortof like sewer or musty - No voc on PID 400(e soil voc 4-5'	
J	TD 22' SWLT = 17.66'	
	JUNCH - cilled with locator for electric	<u>`_</u>

Page -9-

	Page -7-
	Pb As
5P\$ 45-4 13:30,11	1) 163+9 C18 2) 122+8 L17 3) 126+9 19+6 Prift. Brun - Mel. Brun 0 am of some Is pieces cravel sizes + L
	2710 High Standard
	Fe 31.656 (n 2996 ZN 6914 MG 106 AS 700±40 Pb 5234±80 Bacloy1 Cx 6326 Sec15 ASC71 Cd 6 111
	GG/OT /07 ONSITE # 11:00 Called ONE CALL Film optiz - Cox Gledric - 480 volts
•	N. Bekgrud (al. Lud/um = 530 mg/br. Suffere = 14 mg/br. Cal. P10 @ 97.5
0-4'	0-2 (6"5ap) PID Ra-226
	2-4' 0.0 10 0.0 10

SPI	0 x site @ = 14:30
#2	
_	8" into hole through asphalt
_	5.23 MP/hr.
_	P10 Ra-226
17-4-	the 1/2 fall 1 62
	1 then 1/2 fall 1 62 0-1.75 void 1 38
_	7.11
-	(1.75 - 2.75 = 0.2) Sample
· •	14:40
l -	16
	0:0 14
	0.0.
-	4-6' 0.0
-	0.0 17
4-6'	1/2
	6-8' 1. 18
14:50-	0.0 17
-	16
_	15
<u> </u>	TO 22'
-	
_	SWLT = 17.80' Voci = 15:05
-	
-	

	09/06/07 XRF
	Standadization OK vosolution - 204
	2710
	Pb 5705 + 82 As 697+41 (x2326
	F= 3636±549 ZN 7020±112 H584±16 Cn 2015±69 Bet 1043 CHLIY SeC15
	As C74
	Pb As
SPI	
	1) 186±10
021	3) 90=7 45
	Dr. Brwd. loan
ابرم	D 415 410
2-4'	1) C15 C10 2) 23±5 C11
	2) C/5 13+4 Dr. Brwn: - Mad. Brwr. Sl. clayon locan
	The state of the s
4-6	1) (4 (10
.4	3) 24±5 CII
	Tan v.f. gr. sardy loam
	n 414 11±3
6-8'	2) 418 42
	Tow- Drk. Tow SI clayen U.f. gr. Sandy loam

Page -12-

Page -13-Pb As 44±12 417 191110 421 179+9 49 211 1) 26+5 2) 30±5 411 46 3) 103 ± 8 49 6-8' 1745 49 49 413 11.f. 5v. loamy (arkosic) sand 418 218 u.f.cr. Sand

·	Pb A5
2.52. 42.	1) CG1 C54 2) 12H9 C18 3) 39±6 C13 Ork. Brun Med Brun. Dam clay W/ bride (red) Pierres & Is. gravel
7.25- 4'	1) 614 610 2) 19±6 613 3) 17±5 69
4-6'	1) 19\$6 C11 2) 100\$8 C15 3) 26\$6 C12 Dr. Brun clay w/red brick detrites
65'	D 18#5 C10 2) 15#5 Z9 3) C14 Z9 Dyk. Brws Chor. Brown Live day
·	Fe 37904±564 2N 7100±113 Cu3252+74 Pb 5486±85 Ax 667±42 H285±17 Ba C1089 CVC341 Az 275 Se C15 CHC117

			. 1	Page -15-
	Рь	As	Cd	
2-2.75 = 2.6	LT. Brans - Ma	2-38 43±13 626 1. Tau 11.f	798±44 958±48 427±39 . Fr. 100m + per or C	sized
2.50- Not mach Scample	1) 471 ± 18 2) 657+22 3) 1025+28	38±12 242 26±18		
3-4'	1) 16+5 2) 160+9 3) 15+5 OH W/BRNA	L10 26+7 L10 V.TIM SI.	lowny clay	
4-6'	1) 8747 2) 11948 3) 45 04. 51. low	16±5 417 410 mg lang		
. 6-8'	1) C67 2) C16 3) C15 01K- 51.	242 210 29 Joanny Ves	y firm clay	i
				

12/05/07
Jess + I onsite \$ 10:30
cal. PID at office (Ferrell) = 98.5
cal. Ladlum = 550. nR/bx.
While waiting for Geoprate + Mike taught Tess to use Ludlann.
INP decided Now comple location would be at but sport close to SE corner of Bildy. (SSW of it)
Switze readings 2 spots on = 300-400 nR/hr & the one the sample = 1.10 mR/h.
took a scrap sample = 1/4 to 1/e" of dirt/soil/dust on concrete pool. = SPI # 5 0-6" (got about 2" deep at max.) bayced sample = 24 mR/hr.
Mike got to site after waiting for train.

B.S. = 11 mf/hor SWLI 18.32

Ground	Waters	Page -3-
SPI N. BCKGRNI	Z Pª	13:30
T0 22'	1	7.38 SWLI PE !! HAR/hr
SPF#4 = 14	:00	P.6 = 12 mf/R
TD 22'		20.61 - SWLT
veset w/dropout screen TD= 25		18.90-SWLT
SOF#2		PB.=11 mR/R
7022		14.90 -SWLI
SPF		P.B = 11 wR/R
70	18.50	0-5WLF

XRF ZN 7109±93 Cu 2982# 57 As 610 = 34 Pb 5645±71 HC 92= 14 Ba 2881 SPI # 415 173± 8 192 + 8 4/6 412 Brun. Townish Gren UN. f. or. sitty sand w/come pieces (cd. 3:200) of 15. + ate 430 Z9 ± 9 62±10 Dyk. Brun. w/less Townish Coren u.v. f.gr. silty san w/ sd. sizal pieces of 15. + teldspar 48 13 44 **4**8 17 ± 4 19 ± 4 48 25 14 49 38±4 Tan (vradaish tint) w.f. cv. silty sd.

SPT #5 1) 19±4 C8 6-8' 2) 17±4 C7 Ten (Grangish that) v.f. Gukosic Sand	Sr. ~ U.V.f. Sv.
H.S. 27/0 fe 38396±469 ZN 7863±95 Pb 5685±72 As 634±35 Ba 925±363 (12285 As 263 Dup. Pb As 174±8 25± 1-21 2) 310±13 29± 3) 582±15 226	H _c 98±14 Se ≤ 13 Cl ≤ 99 ±6 ±9

Appendix E Photographic Documentation



Photo Date: 1/3/2007
Photographer: S. Schauer
Viewing Direction: N

Comments:

View of western portion of the property. The lot is currently used for storage of power poles, light poles and electrical construction equipment/supplies. The warehouse/shop building is a newer structure.

Photo # 2

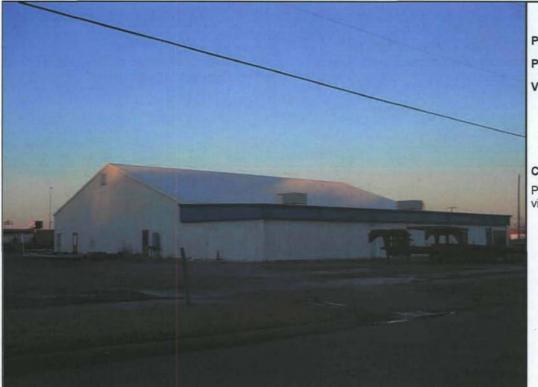


Photo Date: 1/3/2007
Photographer: S. Schauer
Viewing Direction: NE

Comments:

Panning east from photo #1 view of building.

Photo #3

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: E-NE

Comments:

View of SW corner area of property and bounding N-S oriented alley. Ludlum is marking a high radiation oval area in the alley (by rear tire of auto).

Photo #4

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: E-SE

Comments:

Closeup of photo #3 showing high radiation area in alley.

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: SE

Comments:

Moving north up the alley is another area of high radiation marked by the Ludlum.

Photo #6

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: E

Comments:

Closeup of photo #5 showing an area of high radiation.

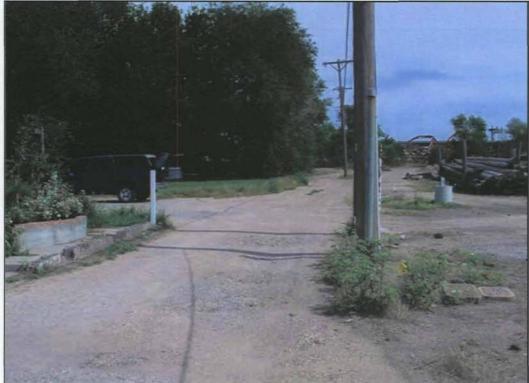


Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: N

Comments:

View of alley north of photo #5 area. North background sampling location is just west of alley terminus (behind tree grove north of auto).

Photo #8

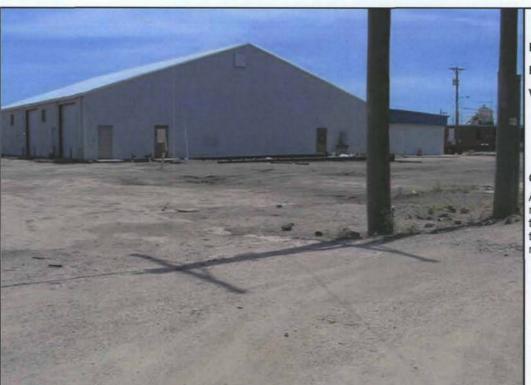


Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: SE

Comments:

Another view of a high radiation spot further north up the alley. White flag marks the spot (in the shadow) just north of the power pole.

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: SE

Comments:

Closeup of photo #8 showing a circular area of high radiation.

Photo # 10

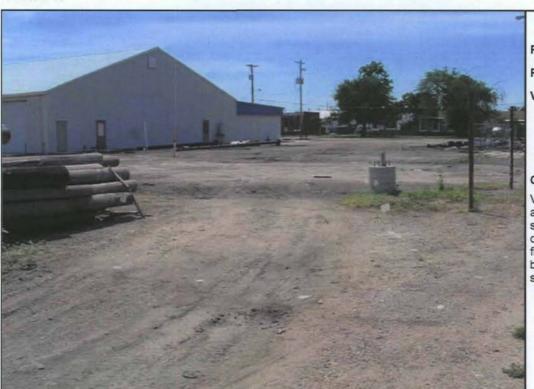


Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: SE

Comments:

View from further north up the alley showing a larger area of spotty radiation contamination. Note white flags by concrete light pole base and a flag by the stacked power pole terminus.

Photo #11

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: E-NE

Comments:

Different view of photo #10 area.

Photo #12

Photo Date: 8/1/2007

Photographer: R. Benne

Viewing Direction: N-NE

Comments:

Another view of photo #10 area. Ludlum in bare area, white flag just NE of Ludlum, and white flag near power pole stack mark spots of high radiation.

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: N-NE

Comments:

View of northern part of alley area.

Photo # 14

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: S

Comments:

View of an area NE of building showing two high radiation spots. This view shows the eastern "alleyrailroad right-of-way" boundary of the property.

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: N

Comments:

View of an area NE of the building showing two spots of high radiation (paint can with white flag and Ludlum with white flag mark the spots).

Photo # 16

Photo Date: 8/1/2007
Photographer: R. Benne
Viewing Direction: NE

Comments:

SE corner area of property. White flag in front of concrete light pole base marks an oval high radiation area.

Photo Date: 8/1/2007 Photographer: R. Benne Viewing Direction: N

Comments:

Closeup of photo #16.

Photo # 18

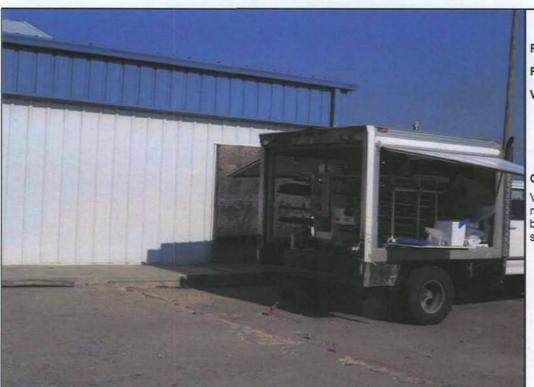


Photo Date: 12/5/2007 Photographer: J. Walker Viewing Direction: NE

Comments:

View of sample location #5 near southeast corner of building. Pipewrench is sticking out of the probe hole.

Appendix F Analytical Data

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 497995

ATTN: Bob Benne CURTIS SOB SUITE 410 TOPEKA KS 66612

Site ID: 08772288

Collection Location: Standard Products, Inc., (SPI) - Bg-1 -Depth 0-6"

Account Code: EP

Collector: REB - BER

Matrix: Soil

Date/Time Collected: 08/16/07 13:35

11 Collect Depth:
 Date/Time Received: 08/22/07 15:27

Sample Comments:

Parameter	Analytical Result	Units	Analysia Date	Analytical Method	
Aluminum (Total)	19000	mg/Kg	09/07/07	EPA 6010	
Antimony (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Arsenic (Total)	10	mg/Kg	09/07/07	EPA 6010	
Barium (Total)	140	mg/Kg	09/07/07	EPA 6010	
Beryllium (Total)	0.63	mg/Kg	09/07/07	EPA 6010	
Boron (Total)	13	mg/Kg	09/07/07	EPA 6010	
Cadmium (Total)	1.6	mg/Kg	09/07/07	EPA 6010	
Calcium (Total)	7700	mg/Kg	09/07/07	EPA 6010	
Chromium (Total)	21	mg/Kg	09/07/07	EPA 6010	
Cobalt (Total)	6.2	mg/Kg	09/07/07	EPA 6010	
Copper (Total)	39	mg/kg	09/07/07	EPA 6010	
Iron (Total)	18000	mg/Kg	09/07/07	EPA 6010	
Lead (Total)	490	mg/Kg	09/07/07	EPA 6010	
Magnesium (Total)	2900	mg/Kg	09/07/07	EPA 6010	
Manganese (Total)	270	mg/Kg	09/07/07	EPA 6010	
Mercury (Total)	< 0.050	mg/Kg	09/06/07	EPA 245.1	
Molybdenum (Total)	3.3	mg/Kg	09/07/07	EPA 6010	
Nickel (Total)	24	mg/Kg	09/07/07	EPA 6010	
Percent Solids	91	Percent	08/27/07	EPA 1311	
Potassium (Total)	4600	mg/Kg	09/07/07	EPA 6010	
Selenium (Total)	< 5.0	mg/kg	09/07/07	EPA 6010	
Silica (Total)	2500	mg/Kg	09/07/07	EPA 6010	
Silver (Total)	< 1.0	ing/Kg	09/07/07	EPA 6010	
Sodium (Total)	170	mg/Kg	09/07/07	EPA 6010	
Thallium (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Vanadium (Total)	40	mg/Kg	09/07/07	EPA 6010	
Zinc (Total)	190	mg/Kg	09/07/07	EPA 6010	

Analytical Comments:

Results for total metals are expressed on a dry weight basis.

Reporting Analyst: JAB Date Reported: 09/11/07 Copies To: File

< - Not Detected at Indicated Level
* - Holding Time Exceeded</pre>

RECEIVED

SEP 1 3 2007

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620

BUREAU OF ENVIRONMENTAL REMEDIATION

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 497996

ATTN: Bob Benne CURTIS SOB SUITE 410

Site ID: 08772288

TOPEKA KS 66612

Account Code: EP

Collection Location: Standard Products, Inc., (SP1)) Bg-2 - Depth 0-6 Collector: REB - BER Matrix: Soil

Date/Time Collected: 08/16/07 13:40

il Collect Depth:
Date/Time Received: 08/22/07 15:27

Sample Comments:

Perameter	Analytical Result Units		Analysis Date	Analytical Method	
Aluminum (Total)	12000	mg/kg	09/07/07	EPA 6010	
Antimony (Total)	< 5.0	mg/kg	09/07/07	EPA 6010	
Armenic (Total)	< \$.0	mg/Kg	19/07/07	EPA 6010	
Barium (Total)	110	mg/kg	09/07/07	EPA 6010	
Beryllium (Total)	0.36	mg/kg	09/07/07	EPA 6010	
Boron (Total)	3.4	mg/kg	09/07/07	EPA 6010	
Cadmium (Total)	7.6	mg/kg	09/07/07	EPA 6010	
Calcium (Total)	15000	mg/kg	09/07/07	EPA 6010	
Chromium (Total)	23	mg/Kg	09/07/07	EPA 6010	
Cobalt (Total)	4.6	mg/kg	09/07/07	EPA 6010	
Copper (Total)	52	mg/Kg	09/07/07	EPA 6010	
Iron (Total)	14000	mg/kg	09/07/07	EPA 6010	
Lead (Total)	180	mg/kg	09/07/07	EPA 6010	
Magnesium (Total)	2100	mg/Kg	09/07/07	EPA 6010	
Manganese (Total)	220	mg/Kg	09/07/07	EPA 6010	
Mercury (Total)	< 0.050	mg/Kg	09/06/07	EPA 245.1	
Molybdenum (Total)	3.6	mg/Kg	09/07/07	EPA 6010	
Nickel (Total)	21	mg/Kg	09/07/07	EPA 6010	
Percent Solids	96	Percent	08/27/07	EPA 1311	
Potassium (Total)	2600	mg/kg	09/07/07	EPA 6010	
Selenium (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Silica (Total)	2100	mg/Kg	09/07/07	EPA 6010	
Silver (Total)	< 1.0	mg/Kg	09/07/07	EPA 6010	
Sodium (Total)	160	mg/kg	09/07/07	EPA 6010	
Thallium (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Vanadium (Total)	26	mg/Kg	09/07/07	EPA 6010	
Zinc (Total)	270	mg/Kg	09/07/07	EPA 6010	

Analytical Comments:

Results for total metals are expressed on a dry weight basis.

Reporting Analyst: JAB Date Reported: 09/11/07 Copies To: File

Not Detected at Indicated Level

- Holding Time Exceeded

RECEIVED

SEP 1 3 200/

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620

BUREAU OF CHARL REMEDIATION

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 497993

ATTN: Bob Benne CURTIS SOB SUITE 410

TOPEKA KS 66612

Site ID: 08772288

Account Code: EP

Collection Location: Standard Products, Inc., (SP1) Background - Depth 0-6"
Collector: REB - BER Matrix: Soil Collect
Date/Time Collected: 08/16/07 13:25 Date/Time Received: 08/

Collect Depth: Date/Time Received: 08/22/07 15:26

Sample Comments:

Parameter	Analytical Result	Units	Analysis Date	Analytical Method	
Alumainum (Total)	25000	mg/Kg	09/07/07	EPA 6010	
Antimony (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Arsenic (Total)	8.4	mg/Kg	09/07/07	EPA 6010	
Barium (Total)	240	met/Ker	09/07/07	EPA 6010	
Beryllium (Total)	0.79	mg/Kg	09/07/07	EPA 6010	
Boron (Total)	20	mg/Kg	09/07/07	EPA 6010	
Cadmium (Total)	1.6	mg/Kg	09/07/07	EPA 6010	
Calcium (Total)	13000	mg/Kg	09/07/07	EPA 6010	
Chromium (Total)	28	mg/Kg	09/07/07	EPA 6010	
Cobalt (Total)	7.6	mq/Kg	09/07/07	EPA 6010	
Copper (Total)	87	mg/Kg	09/07/07	EPA 6010	
Iron (Total)	20000	mg/Kg	707/07 (0 0	EPA 6010	
Lead (Total)	180	mg/Kg	09/07/07	EPA 6010	
Magnesium (Total)	3900	mg/Kg	09/07/07	EPA 6010	
Manganese (Total)	350	mg/Kg	09/07/07	EPA 6010	
Mercury (Total)	0.065	mg/Kg	09/06/07	EPA 245.1	
Molybdenum (Total)	3.9	mg/Kg	09/07/07	EPA 6010	
Nickel (Total)	28	mq/Ng	09/07/07	EPA 6010	
Percent Solids	88	Percent	08/27/07	EPA 1311	
Potassium (Total)	5600	mg/Kg	09/07/07	EPA 6010	
Selenium (Total)	< 5.0	mg/Kg	10/10/00	EPA 6010	
Silica (Total)	2600	mg/Kg	09/07/07	BPA 6010	
Silver (Total)	< 1.0	mg/Kg	09/07/07	EPA 6010	
Sodium (Total)	180	mg/Kg	09/07/07	EPA 6010	
Thallium (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Vanadium (Total)	50	mg/Kg	09/07/07	EPA 6010	
Zinc (Total)	290	mg/Kg	09/07/07	EPA 6010	

Analytical Comments: Results for total metals are expressed on a dry weight basis.

Reporting Analyst: JAB Date Reported: 09/11/07 Copies To: File

< - Not Detected at Indicated Level
* - Holding Time Exceeded</pre>

RECEIVED

SEP 1 3 21m

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620
Laboratory Fax - (785) 296-1641

BUREAU OF

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT

BOB BENNE

CURTIS SOB SUITE 410 TOPEKA KS 66612

Lab Number: 500025

Collection Location: STANDARD PRODUCTS, INC = SPI BCKGRND

Site ID: Account Code: EP

Collector: BOB BENNE/BER Date/Time Collected: 09/05/07 11:10 Matrix: Soil il Collect Depth: 0-21 Date/Time Received: 09/27/07 16:43

Sample Comments: H2O IS FILTERED

Parameter	Analytical Result	Units	Analysis Date	Analytical Method	
Aluminum (Total)	24000	mg/kg	10/09/07	EPA 6010	
Antimony (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Arsenic (Total)	9.3	mg/Kg	10/09/07	EPA 6010	
Barium (Total)	210	mg/Kg	10/09/07	EPA 6010	
Beryllium (Total)	0.92	mq/Kq	10/09/07	EPA 6010	
Boron (Total)	14	mg/Kg	10/09/07	EPA 6010	
Cadmium (Total)	1.2	mg/Kg	10/09/07	EPA 6010	
Calcium (Total)	6800	mg/Xg	10/09/07	EPA 6010	
Chromium (Total)	25	mg/Kg	10/09/07	EPA 6010	
Cobalt (Total)	8.2	mg/kg	10/09/07	EPA 6010	
Copper (Total)	47	mg/Xg	10/09/07	EPA 6010	
Iron (Total)	23000	mg/Kg	10/09/07	EPA 6010	
Lead (Total)	110	mg/Kg	10/09/07	EPA 6010	
Magnesium (Total)	3700	mg/Kg	10/09/07	EPA 6010	
Manganese (Total)	360	mg/Kg	10/09/07	EPA 6010	
Molybdenum (Total)	2.5	mg/Kg	10/09/07	EPA 6010	
Nickel (Total)	17	mg/Kg	10/09/07	EPA 6010	
Percent Solids	88	Percent	10/05/07	EPA 1311	
Potassium (Total)	5100	mg/Kg	10/09/07	EPA 6010	
Selenium (Total)	< 5.Q	mg/Kg	10/09/07	EPA 6010	
Silica (Total)	3100	mg/Kg	10/09/07	EPA 6010	
Silver (Total)	< 1.0	mg/Kg	10/09/07	EPA 6010	
Sodium (Total)	170	mg/Kg	10/09/07	EPA 6010	
Thallium (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Vanadium (Total)	49	mg/kg	10/09/07	EPA 6010	
Zinc (Total)	150	mg/Kg	10/09/07	EPA 6010	

Analytical Comments: Results for total metals are expressed on a dry weight basis.

Reporting Analyst: JAB Date Reported: 10/12/07 Copies To: File

< - Not Detected at Indicated Level * - Holding Time Exceeded

OCT-1 6 2007

Laboratory Customer Service - (785) 296-1620

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION BOB BENNE

Analysis Code: PT Lab Number: 500024

CURTIS SOB SUITE 410

TOPEKA KS 66612

Site ID:

Collection Location: STANDARD PRODUCTS, INC = SPI BCKGRND Collector: BOB BENNE/BER Matrix: Soil Date/Time Collected: 09/05/07 11:10 Date.

Account Code: EP

Collect Depth: 2-4' Date/Time Received: 09/27/07 16:42

Sample Comments: H2O IS FILTERED

Parameter	Analytical Result	Units	Analysis Date	Analytical Method	
Antimony (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Arsenic (Total)	8.5	mg/Kg	10/09/07	EPA 6010	
Barium (Total)	180	mg/Kg	10/09/07	EPA 6010	
Beryllium (Total)	1.1	mg/Kg	10/09/07	EPA 6010	
Boron (Total)	17	mg/Kg	10/09/07	EPA 6010	
Cadmium (Total)	< 1.0	mg/Kg	10/09/07	EPA 6010	
Calcium (Total)	5000	mg/Kg	10/09/07	EPA 6010	
Chromium (Total)	28	mg/Kg	10/09/07	EPA 6010	
Cobalt (Total)	9.4	mg/Kg	10/09/07	EPA 6010	
Copper (Total)	20	mg/Kg	10/09/07	EPA 6010	
Iron (Total)	24000	mg/Kg	10/09/07	EPA 6010	
Lead (Total)	9.1	mg/Kg	10/09/07	EPA 6010	
Magnesium (Total)	5200	mq/Kq	10/09/07	EPA 6010	
Manganese (Total)	320	mg/Kg	10/09/07	EPA 6010	
Molybdenum (Total)	2.7	mg/Kg	10/09/07	EPA 6010	
Nickel (Total)	16	mg/Kg	10/09/07	EPA 6010	
Percent Solids	85	Percent	10/05/07	EPA 1311	
Potassium (Total)	6000	mg/Kg	10/09/07	EPA 6010	
Selenium (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Silica (Total)	3500	mq/Kq	10/09/07	EPA 6010	
Silver (Total)	< 1.0	mg/Kg	10/09/07	EPA 6010	
Sodium (Total)	160	mg/Kg	10/09/07	EPA 6010	
Thallium (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Vanadium (Total)	64	mg/Kg	10/09/07	EPA 6010	
Zinc (Total)	70	mg/Kg	10/09/07	EPA 6010	

Duane R. Boline, Ph.D., Director

Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641

Analytical Comments:

Results for total metals are expressed on a dry weight basis.

Reporting Analyst: JAB/ Date Reported: 10/12/07 Copies To: File < - Not Detected at Indicated Level

* - Holding Time Exceeded

RECEIVED

OCT 1 6 2007

BUREAU OF

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 500023

BOB BENNE

CURTIS SOB SUITE 410 TOPEKA KS 66612

Site ID:

Account Code: EP

Collection Location: STANDARD PRODUCTS, INC = SPI BCKGRND

Matrix: Soil

Collector: BOB BENNE/BER Date/Time Collected: 09/05/07 11:20 il Collect Depth: 4-6 Date/Time Received: 09/27/07 16:41

Sample Comments: H2O IS FILTERED

Parameter	Analytical Result	Units	Analysis Date	Analytical Method	
Aluminum (Total)	21000	mg/Kg	10/09/07	EPA 6010	
Antimony (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Arsenic (Total)	6.8	mg/Kg	10/09/07	EPA 6010	
Barium (Total)	150	mg/Kg	10/09/07	EPA 6010	
Beryllium (Total)	0.60	mq/Kq	10/09/07	EPA 6010	
Boron (Total)	11	mg/Kg	10/09/07	EPA 6010	
Cadmium (Total)	< 1.0	mg/Kg	10/09/07	EPA 6010	
Calcium (Total)	10000	mg/Kg	10/09/07	EPA 6010	
Chromium (Total)	21	mg/Kg	10/09/07	EPA 6010	
Cobalt (Total)	6.1	mg/Kg	10/09/07	EPA 6010	
Copper (Total)	11	mg/Kg	10/09/07	EPA 6010	
Iron (Total)	16000	mg/Kg	10/09/07	EPA 6010	
Lead (Total)	5.4	mg/Kg	10/09/07	EPA 6010	
Magnesium (Total)	3700	mg/Kg	10/09/07	EPA 6010	
Manganese (Total)	190	mg/Kg	10/09/07	EPA 6010	
Molybdenum (Total)	2.2	mg/Kg	10/09/07	EPA 6010	
Nickel (Total)	11	mg/Kg	10/09/07	EPA 6010	
Percent Solids	91	Percent	10/05/07	EPA 1311	
Potassium (Total)	3900	mg/Kg	10/09/07	EPA 6010	
Selenium (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Silica (Total)	2600	mg/Kg	10/09/07	EPA 6010	
Silver (Total)	< 1.0	mg/Kg	10/09/07	EPA 6010	
Sodium (Total)	200	mg/Kg	10/09/07	EPA 6010	
Thallium (Total)	< 5.0	mg/Kg	10/09/07	EPA 6010	
Vanadium (Total)	45	mg/Kg	10/09/07	EPA 6010	
Zinc (Total)	46	mg/Kg	10/09/07	EPA 6010	

Analytical Comments:

Results for total metals are expressed on a dry weight basis.

Reporting Analyst: JAB Date Reported: 10/12/07 Copies To: File

< - Not Detected at Indicated Level * - Holding Time Exceeded

RECEIVED

OCT 1 6 2007

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 497997

ATTN: Bob Benne CURTIS SOB SUITE 410

Site ID: 08772288

TOPEKA KS 66612

Account Code: EP

il Collect Depth: Date/Time Received: 08/22/07 15:27

| Collection Location: Standard Products, Inc., (SP1) - #1 - Depth 0-6* Collector: REB - BER Matrix: Soil Collect/Time Collected: 08/16/07 13:10 Date/Time Received

sample Comments:

Parameter	Analytical Result	Units	Analysis Date	Analytical Method	
Aluminum (Total)	8600	mg/Kg	09/07/07	BPA 6010	
Antimony (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Arsenic (Total)	5.9	mg/Kg	09/07/07	EPA 6010	
Barium (Total)	99	mq/Kg	09/07/07	EPA 6010	
Beryllium (Total)	0.37	mg/Kg	09/07/07	EPA 6010	
Boron (Total)	7.3	mg/Kg	09/07/07	EPA 6010	
Cadmium (Total)	1.8	mg/Kg	09/07/07	EPA 6010	
Calcium (Total)	37000	mg/Kg	09/07/07	EPA 6010	
Chromium (Total)	24	mg/Kg	09/07/07	EPA 6010	
Cobalt (Total)	4.1 -	mg/Kg	09/07/07	EPA 6010	
Copper (Total)	56	mg/Kg	09/07/07	EPA 6010	
Iron (Total)	12000	mg/kg	09/07/07	EPA 6010	
Lead (Total)	65	mq/Kq	09/07/07	BPA 6010	
Magnesium (Total)	3800	mg/Kg	09/07/07	EPA 6010	
Mangamese (Total)	230	mg/Kg	09/07/07	EPA 6010	
Mercury (Total)	< 0.050	mq/Kg	09/06/07	EPA 245.1	
Molybdenum (Total)	. 10	mg/Kg	09/07/07	EPA 6010	
Nickel (Total)	32	mg/Kg	09/07/07	EPA 6010	
Percent Solids	97	Percent	08/27/07	EPA 1311	
Potassium (Total)	1800	mg/Kg	09/07/07	EPA 6010	
Selenium (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Silica (Total)	2300	mg/Kg	09/07/07	EPA 6010	
Silver (Total)	< 1.0	mg/Kg	09/07/07	EPA 6010	
Sodium (Total)	200	mg/Kg	09/07/07	EPA 6010	
Thallium (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010	
Vanadium (Total)	19	mg/Kg	09/07/07	EPA 6010	
Zinc (Total)	220	mg/Kg	09/07/07	EPA 6010	

Analytical Comments: Results for total metals, are expressed on a dry weight basis.

Reporting Analyst: JAB Date Reported: 09/11/07 Copies To: File

< - Not Detected at Indicated Level * - Holding Time Exceeded

RECEIVED

SEP 1 3 2000

Duane R. Bollne, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641

BUREAU OF

TestAmerica St. Louis

Matrix....: SOLID

Kansas Dept of Health and Environment

Client Sample ID: SPI #1 1-2'

TOTAL Metals

Lot-Sample #...: F8A070103-001

Date Sampled...: 09/05/07 15:25 Date Received..: 01/05/08

* Moisture....: 0.20

PARAMETER .	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDBR #
Prep Batch #	: 8011063					
Mercury	122	33.4	ug/kg	SW846 7471A	01/11/08	KB5H31AK
	0.122	Dilution Fact	or: 1	Analysis Time: 11:50	•	
Prep Batch #	: 8011076					
Silver	ND	5.0	mg/kg	SW846 6010B	01/11/08	KE5H3 LAH
		Dilution Fact	or: 5	Analysis Time: 21:17	•	
Arsenic	11.9	5.0	ng/kg	SW846 6010B	01/11-01/14/08	KR5A31AC
		Dilution Pact	or: 5	Analysis Time: 23:46	; / ·	
Barium	154	25.1	ng/kg	S#846 6010B	01/11-01/14/08	KKSA31AD
		Dilution Fact	or: 5	Analysis Time: 23:46	i	
Cadmium	7.1	2.5	ng/kg	SW846 6010B	01/11-01/14/08	KESH31AE
		Dilution Pact	cor : 5	Analysis Time: 23:46	, }	
Chromium	16.1	5.0	mg/kg	SW846 6010B	01/11-01/14/08	KRSH3 LAJ
		Dilution Pact	ar: 5	Analywis Time: 23:46	;	
Lead	458	5.0	ng/kg	SW846 6010B	01/11-01/14/08	KR5H31AF
		Dilution Fact	or: 5	Analysis Time: 23:46	1	
Selenium	ND	7.5	mg/kg	SW846 6010B	01/11-01/14/08	KE5H31AG
		Dilution Fact	or: 5	Analysis Time: 23:46	•	-

Results and seporting limits have been adjusted for day weight.

Kansas Dept of Health and Environment

Client Sample ID: SPI #1 1-2'

General Chemistry

Lot-Sample #...: F8A070103-001 Work Order #...: KE5H3 Matrix.....: SOLID

Date Sampled...: 09/05/07 15:25 Date Received..: 01/05/08

* Moisture....: 0.20

						PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHO	D	ANALYSIS DATE	BATCH #
Percent Moisture	0.20	0.10	*	MCANIN	160.3 MOD	01/07-01/08/08	8007042
	pilu	tion Facto	r: 1	Analysis	Time: 00:00		

Kansas Dept of Health and Environment

Client Sample ID: SPI #2 0-2'

TOTAL Metals

Lot-Sample #...: F8A070103-002 Matrix.....: SOLID Date Sampled...: 09/05/07 14:40 Date Received..: 01/05/08

* Moisture....: 0.76

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	0.0732	33.6 ug/kg Dilution Factor: 1	SW846 7471A Analysis Time: 12:11	01/11/08	KR5JHJAK
	8011076	2.0/	CWO4C CO10D	01/21/00	erac Tita Nu
Silver	ND	2.0 mg/kg Dilution Pactor: 2	SW846 6010B Analysis Time: 21:39	01/11/08	KE5JM1AH
Arsenic	6.4	2.0 mg/kg	SW846 5010B Analysis Time: 23:08	01/11-01/14/08	RESJMIAC
Barium	113	10.1 mg/kg pilution Factor: 2	SW846 6010B	01/11-01/14/0	B KRSJMIAD
Cadmium	1.0	1.0 mg/kg Dilution Factor: 2	SW846 6010B Analysis Time: 23:08	01/11-01/14/0	RESJNIAR
Chronium	8.6	2.0 mg/kg Dilution Factor: 2	SW846 6010B Analysis Time: 23:08	01/11-01/14/0	8 KESJMLAJ
Lead	157	2.0 mg/kg Dilution Factor: 2	578846 6010B Analysis Time: 23:08	01/11-01/14/0	B KR5JNLAF
Selenium	ND	3.0 mg/kg Dilution Factor: 2	SW846 6010B Analysis Time: 23:08	01/11-01/14/0	8 KE5JMlAG

HOTE (S):
Results and reporting limits have been adjusted for dry weight.

OT: 70

٦,

Kansas Dept of Health and Environment

Client Sample ID: SPI #2 0-2'

General Chemistry

Lot-Sample #...: F8A070103-002 Work Order #...: KE5JM Date Sampled...: 09/05/07 14:40 Date Received..: 01/05/08

Matrix..... SOLID

* Moisture....: 0.76

PREPARATION- PREP MRTHOD ANALYSIS DATE BATCH # 01/07-01/08/08 8007042 PARAMETER RESULT UNITS METHOD Percent Moisture 0.10 Dilution Pactor: 1 Analysis Time..: 00:00

Kansas Dept of Health and Rovironment

Client Sample ID: SPI #3 0-6'

TOTAL Metals

		3-003 12:30 Date Reco	eived.	.: 01/05/08	Matrix:	SOLID
Parameter	result	REPORTING LIMIT U	NITS_	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	. 9011063					
Mercury	63.1	33.3 Us Dilution Factor:	g/kg 1	SW846 7471A Analysis Time: 12:14	01/11/08	resj81ab
	0.0631					
Prep Batch # Bilver	ND ND	2.0 m Dilution Factor:	g/kg 2	SW846 6010B Analysis Time: 21:45	01/11/08	Ke5J81AF
Arsenic	3.8	2.0 m Dilution Factor:	g/kg 2	SW846 6010B Analysis Time: 23:13	01/11-01/14/08	KR5J81AC
Barium	82.2	10.0 m Dilution Factor:	g/kg 2	SW846 6010B	01/11-01/14/08	KRSJ81A)
Cadmium	1.1	1.0 m	g/kg 2	SW846 6010B Analysis Time: 25:13	01/11-01/14/08	KR5J81AI
Chronium	10.5	2.0 m Dilution Factor:	g/kg 2	SW846 6010B Analysis Time: 23:13	01/11-01/14/08	Krsj81a.
Lead	113	2.0 m	g/kg ²	SR846 6010B Analysis Time: 23:13	01/11-01/14/08	KESJ81A1
Selenium	ND	3.0 m Dilution Factor:	g/kg 2	SW846 6010B	01/11-01/14/08	KE5J81A
				-		

Results and reporting Husin have been adjusted for day weight.

TestAmerica St. Louis

Kansas Dept of Realth and Environment

Client Sample ID: SPI #3 0-6'

General Chemistry

Lot-Sample #...: F8A070103-003 Work Order #...: KE5J8

Matrix..... SOLID

Date Sampled...: 09/05/07 12:30 Date Received..: 01/05/08

* Moisture....: 0.090

PREPARATION- PREP PARAMETER METHOD ANALYSIS DATE BATCH # Percent Moisture 0.090 B 0.10 MCZAWW 160.3 MOD 01/07-01/08/08 8007042 Dilution Factor: 1 Analysis Time..: 00:00

NOTE(S):

RL. Reporting Limit

B Estimated regalt. Result is less than RI

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 497994

Site ID: 08772288 Account Code: EP

ATTN: Bob Benne CURTIS SOB SUITE 410 TOPEKA KS 66612

Collection Location: Standard Products, Inc., (SPI) - #4 -Depth 0-6"

Collector: REB - BER Date/Time Collected: 08/16/07 13:30

Matrix: Soil il Collect Depth: Date/Time Received: 08/22/07 15:26

Sample Comments:

Parameter	Analytical Result	Unita	Analysis Date	Analytical Method
PSIAMELEI		0112.0	Mace	HELIIOG
Aluminum (Total)	6000	mg/Kg	09/07/07	EPA 6010
Antimony (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010
Arsenic (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010
Barium (Total)	96	mg/Kg	09/07/07	EPA 6010
Beryllium (Total)	0.25	mg/Kg	09/07/07	EPA 6010
Boron (Total)	13	noq/Kg	09/07/07	EPA 6010
Cadmium (Total)	1.3	mg/Kg	09/07/07	BPA 6010
Calcium (Total)	53000	mg/Kg	09/07/07	EPA 6010
Chromium (Total)	11	mq/Kg	09/07/07	EPA 6010
Cobalt (Total)	2.6	mg/Kg	09/07/07	EPA 6010
Copper (Total)	64	mq/Kg	09/07/07	EPA 6010
Iron (Total)	10000	mg/Kg	09/07/07	EPA 6010
Lead (Total)	91	mg/Kg	09/07/07	EPA 6010
Magnesium (Total)	2000	mq/Kg	09/07/07	EPA 6010
Manganese (Total)	150	mg/Kg	09/07/07	EPA 6010
Mercury (Total)	0.071	mg/Kg	09/06/07	EPA 245.1
Molybdenum (Total)	3.0	mg/Kg	09/07/07	EPA 6010
Nickel (Total)	17	mg/Kg	09/07/07	EPA 6010
Percent Solids	94	Percent	08/27/07	EPA 1311
Potassium (Total)	1700	ρg/Kg	09/07/07	EPA 6010
Selenium (Total)	< 5.Q	mg/Kg	09/07/07	EPA 6010
Silica (Total)	1600	mg/kg	09/07/07	EPA 6010
Silver (Total)	< 1.0	mg/Kg	09/07/07	EPA 6010
Sodium (Total)	430	mg/Kg	09/07/07	EPA 6010
Thellium (Total)	< 5.0	mg/Kg	09/07/07	EPA 6010
Vanadium (Total)	16	mg/Kg	09/07/07	EPA 6010
Zinc (Total)	170	mg/Kg	09/07/07	EBY COTO

Analytical Comments: Results for total metals are expressed on a dry weight basis.

Reporting Analyst: JAB Date Reported: 09/11/07 Copies To: File

< - Not Detected at Indicated Level
* - Holding Time Exceeded</pre>

RECEIVED

SEP 1 3 2007

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641

BUREAU OF ENVIRONMENTAL REMEDIATION

Matrix..... SOLID

Kansas Dept of Health and Environment

Client Sample ID: SPI #4 2-2.5'

TOTAL Metals

Lot-Sample #...: F8A070103-004

Date Sampled...: 09/05/07 12:35 Date Received..: 01/05/08

* Moisture....: 0.20

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	.: 8011063					
Mercury	149	33.4	ug/kg	SW846 7471A	01/11/08	KR5KA1AK
	0,149	Dilution Pact	or: 1	Analysis Time: 12:16	i	
Prep Batch #	.: 8011076					
Silver	ND	2.0	mg/kg	SW846 6010B	01/11/08	KE5KALAH
		Dilution Fact	or: 2	Analysis Time: 21:50	•	
Arsenic	4.5 B	5.0	mg/kg	SW846 6010B	01/11-01/14/08	KR5KA1AC
		Dilution Pact	or: 5	Analysis Time: 23:15	•	
Barium	75.2	25.1	mg/kg	SW846 6010B	01/11-01/14/08	KESKA1AD
		Dilution Fact	or: 5	Analysis Time: 23:15	•	
Cadmium	806	1.0	mg/kg	SW846 6010B	01/11-01/15/08	KR5KA1AR
		Dilution Fact	or: 2	Analysis Time: 00:00	•	
Chromium	21,0	5.0	mg/kg	SW846 6010B	01/11-01/14/08	KRSKAJAJ
		Dilution Pact	or: 5	Analysis Time: 23:15	, , , ,	
Lead	477	2.0	mg/kg	SW846 6010B	01/11-01/15/08	KRSKA1AF
		Dilution Fact		Analysis Time: 00:0	9	
Selenium	ND	3.0	mq/kg	SW846 6010B	01/11-01/15/08	KR5KA1AG
	-	Dilution Fact	• •	Analysis Time: 00:0		

Results and reporting limits have been adjusted for dry weight.

B. Estimated result. Result is less than RL.

NOTE (S) :

Kansas Dept of Health and Environment

Client Sample ID: SPI #4 2-2.5'

General Chemistry

Lot-Sample #...: F8A070103-004 Work Order #...: KESKA Matrix.....: SOLID Date Sampled...: 09/05/07 12:35 Date Received..: 01/05/08

* Moisture....: 0.20

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION-ANALYSIS DATE
 PARAMETER
 BATCH #

 Percent Moisture
 0.20
 0.10
 %
 MCARW 160.3 MOD
 01/07-01/08/08
 8007042

 Dilution Factor: 1
 Analysis Time.: 00:00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

LOI - 10A070203

. .

Kansas Dept of Health and Environment

Client Sample ID: SPI #4 2.5~2.75'

TOTAL Metals

Lot-Sample #...: F8A070103-005

Date Sampled...: 09/05/07 12:35 Date Received..: 01/05/08

* Moisture....: 0.22

PARAMETER	result	RBPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Hercury	: 8011063 202 C, 202	33.4 Dilution Pacto	ug/kg r: 1	SW846 74712 Analysis Time: 12:18	01/11/08	KR5KD1AK
Prep Batch # Silver	: 8011076 ND	2.0 Dilution Facto	mg/kg	SW846 6010B Analysis Time: 21:55	01/11/08	KR5KD1AH
Arsenic	15.4	10.0 Dilution Pacto	mg/kg ar: 10	SW846 6010B Analysis Time: 23:24	01/11-01/14/08	KR5KD1AC
Barium	290	50.1 Dilution Facto	ng/kg or: 10	SW846 6010B Analysis Time: 23:24	01/11-01/14/08	KR5KD1AD
Cadmium	353	1.0 Dilution Facto	ng/kg r:2	\$#846 6010B Analysis Time: 00:13	01/11-01/15/08	KR5KD1AR
Chronium	31.4	10.0 Dilution Pacto	ng/kg ar: 10	88846 6010B Analysis Time: 23:24	01/11-01/14/08	KR5KD1AJ
Lead	1340	2.0 Dilution Facto	mg/kg x:2	SH846 6010B . Analysis Time: 00:13	01/11-01/15/08	KR5KD1AF
Selenium	1.4 B	3.0 Dilution Facto	mg/kg or:2	SW846 6010B Analysis Time: 00:13	01/11-01/15/08	KR5KD1AG

MOTE(8):

Results and reporting limits have been adjusted for dry weight.

Kansas Dept of Realth and Environment

Client Sample ID: SPI #4 2.5-2.75'

General Chemistry

* Moisture....: 0.22

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION-ANALYSIS DATE
 PARAMETER
 ANALYSIS DATE
 BATCH #

 Percent Moisture
 0.22
 0.10 %
 MCANW 160.3 MOD
 01/07-01/08/08
 8007042

 Dilucion Factor: 1
 Analysis Time.: 00:00
 00:00
 00:00
 00:00

LOT# F8A070103~

ا ء ۔

B Estimated result. Result is less than RL.

Kansas Dept of Realth and Environment

Client Sample ID: SPI #4 3-4'

TOTAL Metals

Lot-Sample #...: F8A070103-006

Matrix....: SOLID

Date Sampled...: 09/05/07 12:35 Date Received..: 01/05/08

* Moisture....: 0.81

PARAMETER	RESULT	REPORTING LIMIT	UNITS	WETHOD	·	PREPARATION- ANALYSIS DATE	Work Order #
Prep Batch #	93.4	33.6 Dilution Facto	ug/kg r: 1	SW846 Analysis	7471A Time: 12:21	01/11/08	KR5KE1AK
Prep Batch # Silver	ND	2.0 Dilution Facto	mg/kg r:2	SW846 Analysis	6010B Time: 22:01	01/11/08	Kr2kr1ah
Arsenic	11.0	2.0 Dilution Pacto	mag/kg or: 2	SW846 Analysis	6010B Time: 00:19	01/11-01/15/08	KRSKKIAC
Barium	176	10.1 Dilution Facto	mg/kg or:2	SW846 Analysis	6010B Time: 00:19	01/11-01/15/08	KR5KR1AD
Cadmium	4.6	1.0 Dilution Facto	mag/kg or: 2	SW846 Analysis	6010B Time: 00:19	01/11-01/15/08	KR5KR1AR
Chronium	12.2	2.0 Dilution Facto	ang/kag ox:2		6010B Time: 00:19	01/11-01/15/08	KE5KK1AJ
Lead	185	2.0 Dilution Facto	mg/kg or:2		6010B Time: 00:19	01/11-01/15/08	reskelap
Selenium	1.1 B	3.0 Dilution Facto	mg/kg or:2		6010B Time: 00:19	01/11-01/15/08	KR5KH1MG

NOTE(S);

Results and reporting them have been adjusted for day weight.

Kansas Dept of Health and Environment

Client Sample ID: SPI #4 3-4'

General Chemistry

Lot-Sample #...: F8A070103-006 Work Order #...: K85KB Matrix.....: SOLID Date Sampled...: 09/05/07 12:35 Date Ecceived..: 01/05/08

* Moisture....: 0.81

 PARAMETER
 RESULT
 FL
 UNITS
 METEOD
 PREPARATION-ANALYSIS DATE
 PREPARATION-BATCH #

 Percent Moisture
 0.81
 0.10
 %
 MCANW 160.3 MCD
 01/07-01/08/08
 8007042

 Dilution Pactor: 1
 Analysis Time.: 00:00
 0.00
 0.00
 0.00
 0.00

T# F8A070103

of the

0700

B Estimated regult. Result is less than RL.

TestAmerica St. Louis

12/17-12/19/07 KDW4H1AF

Kansas Dept of Health and Buvironment

Client Sample ID: SPI #5 0-6"

TOTAL Metals

Lot-Sample #. Date Sampled.			Received.	Matrix: SOLID		
* Moisture	: 3.3					
		REPORTIA			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #.	: 7348076					
Mercury	96.7	34.4	ug/kg	S#846 74713	12/14/07	KD#4H1AJ
		Dilution Pac	tor; 1	Analysis Time: 12:03	ı	
Prep Batch #.	: 7351089					
Silver	ND	2.1	mg/kg	SW846 6010B	12/17-12/19/07	KDW4Hlag
		Dilution Pac	tor: 2	Analysis Time: 09:01	ı	
Arsenic	2.9	2.1	ng/kg	B#846 6010B	12/17-12/19/07	KURAHLAA
		Dilution Fac	tor: 2	Analysis Time: 09:03	1	
Barium	96.0	10.3	ng/kg	8W846 6010B	12/17-12/19/07	KDWAHLAC
		Dilution Fac	etor: 2	Analysis Time: 09:01	•	
Cadmium	1.6	1.0	ng/kg	5W846 6010B	12/17-12/19/07	XIWAHIAD
		Dilution Fac	stor: 2	Analysis Time: 09:0:	3	
Chronius	10.7	2.1	ng/kg	S#846 6010B	12/17-12/19/07	EDMAHLAH
		Dilution Fac	ctor: 2	Analysis Time: 09:03	•	
Lead	175	2,1	tog/kg	8#846 6010B	12/17-12/19/07	KOW4HLAB
		Dilution Pa	ctor: 2	Analysis Time: 09:03	3	

mg/kg

SW846 6010B

Analysis Time..: 09:03

Results and reporting limits have been adjusted for day weight.

ND

3.1

Dilution Pactor: 2

Selenium

NOTE(S):

TestAmerica St. Louis

Kansas Dept of Health and Environment

Client Sample ID: SPI #5 0-6"

General Chemistry

Lot:-Sample 3...: F7L110245-001 Work Order 3...: KDN4H Matrix....: SOLID Date Sampled...: 12/05/07 11:15 Date Received..: 12/11/07

* Moisture....: 3.3

·					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Moisture	3.3	0.10	*	MCANW 160.3 MOD	12/12-12/13/07	7346047
	Di	lution Pacto	or: 1	Analysis Time : 00:00		

Matrix..... SOLID

Kansas Dept of Health and Environment

Client Sample ID: SPI #5 1-2'

TOTAL Metals

Lot-Sample #...: F7L110245-002

Date Sampled...: 12/05/07 11:25 Date Received..: 12/11/07

* Moisture....: 17

		REPORTIN	•		PREFARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	. 7348076				•	
Mercury	278	40.0	ug/kg	SW846 7471A	12/14/07	KDW4V1AJ
		Dilution Fact		Analysis Time: 12:0	5	
				· ·		
Prep Batch #	.: 7351089					
Silver	18.0	6.0	ng/kg	SW846 6010B	12/17-12/19/07	KDW4V1AG
		Dilution Fact	or: 5	Analysis Time: 09:3	5	
Arsenic	16.0	6.0	may/leg	SM846 6010B	12/17-12/19/07	KD#4V1AA
		Dilution Pac		Analysis Time: 09:	,	
Barium	228	30.0	mg/kg	SW846 6010B	12/17-12/19/07	KDW4V1AC
		Dilution Pac	tor: 5	Analysia Time: 09:	95	
Cadaium	9.2	3.0	ng/kg	S#846 6010B	12/17-12/19/07	TIMAVIAN
COMMITTEE	J.4	Dilution Fact		Analysis Time: 09:		
		DITUCION PAC	.01. 5	AMAZYBIB IIMB US		
Chronium	20.2	6.0	mg/kg	SW846 6010B	12/17-12/19/07	KDW4V1AH
		Dilution Fact	tor: 5	Analysis Time: 09:	15	
						_
Lead	731	6.0	mg/kg	88846 6010B	12/17-12/19/0	KDW4VLAE
		Dilution Fac	tor: 5	Analysis Time: 09:	35	
Selenium	ND	9.0	mg/kg	SW846 6010B	12/17-12/19/0	KDW4VLAF
		Dilution Fac	tor: 5	Analysis Time: 09:	35	
MOTE(S):						

Results and reporting limits have been adjusted for day weight.

Kannas Dept of Health and Environment

Client Sample ID: SPI #5 1-2'

General Chemistry

Lot-Sample #...: F7L110245-002 Work Order #...: KDN4V Matrix.....: SOLID Date Sampled...: 12/05/07 11:25 Date Received..: 12/11/07

* Moisture....: 17

					PREPARATION-	PRBP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Moisture	16.7	0.10	ŧ	MCANN 160.3 NOD	12/12-12/13/07	7346047
	Dilu	tion Facto	r: 1 /	inalysis Time: 00:00		

Matrix..... SOLID

Kansas Dept of Health and Environment

Client Sample ID: SPI #5 7'

GC/MS Volatiles

Lot-Sample #:	F7L110245-003	Work Order #:	KDW4 X1AA
Date Sampled:	12/05/07 11:35	Date Received:	12/11/07
Prep Date:	12/14/07	Analysis Date	12/14/07
Prep Batch #:	7348460	Analysis Time:	18:44
Dilution Factor:	1	_	
a Majarera .	22	Mathed .	CW046 9160B

		REPORTI	NG
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	5.4	ug/kg
Bromochloromethane	ND	6.4	ug/kg
n-Butylbenzene	ND	6.4	ug/kg
sec-Butylbenzene	ND	6.4	ug/kg
tert-Butylbenzene	ND	6.4	ug/kg
2-Chlorotoluene	ND	6.4	ug/kg
4-Chlorotoluene	ND	6.4	ug/kg
1,2-Dibromoethane	ND	6.4	ug/kg
Dibromomethane	ND	6.4	ug/kg
Dichlorodifluoromethane	ND	13	ug/kg
cis-1,2-Dichloroethene	MD .	6.4	ug/kg
trans-1,2-Dichloroethene	ND	6.4	ug/kg
1,3-Dichloropropane	MD	6.4	ug/kg
2,2-Dichloropropane	ND	6.4	ug/kg
1,1-Dichloropropene	MD	6.4	ug/kg
Trichlorofluoromethane	ND	6.4	ug/kg
Hexachlorobutadiene	MD	6.4	ug/kg
Isopropylbenzene	MD	6.4	ug/kg
p-Isopropyltoluene	ND	6.4	ug/kg
Emphthalene	5.8 J,B	6.4	ug/kg
n-Propylbenzene	ND	6.4	ug/kg
1,1,1,2-Tetrachloroethane	MD	6.4	ug/kg
1,2,3-Trichlorobensene	ND	6.4	ug/kg
1,2,4-Trichloro-	ND	6.4	ug/kg
benzene			4.
1,2,3-Trichloropropane	ND	6.4	ug/kg
1,2,4-Trimethylhensene	0.63 J,B	6.4	ug/kg
1,3,5-Trimethylbenzene	ND	6.4	ug/kg
Chloromethane	MD	13	ug/kg
Vinyl chloride	MD	6.4	ug/kg
Bromomethane	ND	13	ug/kg
Chloroethane	ND	13	ug/kg
Acetone	ND	64	ug/kg
1,1-Dichloroethene	ND	6.4	ug/kg
Methylene chloride	ND	6.4	ug/kg
Carbon disulfide	MD	6.4	ug/kg
1,1-Dichloroethane	ND	6.4	ug/kg
2-Butanone	ND	13	ug/kg

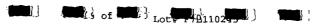
(Continued on next page)

Kansss Dept of Health and Environment

Client Sample ID: SPI #5 7'

GC/MS Volatiles

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloroform	MD	6.4	ug/kg
1,1,1-Trichloroethane	ND	6.4	ug/kg
Carbon tetrachloride	ND	6.4	ug/kg
1,2-Dichloroethane	ND	6.4	ug/kg
Benzene	ND	6.4	ug/kg
Trichloroethene	ND	6.4	ug/kg
1,2-Dichloropropase	ND	6.4	ug/kg
Bromodichloromethane	ND	6.4	ug/kg
4-Methyl-2-pentanone	ND	13	ug/kg
Toluene	ND	6.4	ug/kg
1,1,2-Trichloroethane	ND	6.4	ug/kg
2-Hexanone	NID	13	ug/kg
Tetrachloroethene	NTD	6.4	ug/kg
Chlorobenzene	ND	6.4	ug/kg
Bthylbenzene	ND	6.4	ug/kg
Xylenes (total)	ND	19	ug/kg
Styrene	ND	6.4	ug/kg
Bromoform	MD	6.4	ug/kg
1,1,2,2-Tetrachloroethane	ND	6.4	ug/kg
1,2-Dichlorobensene	ND	6.4	ug/kg
1,3-Dichlorobenzene	ND	6.4	ug/kg
1,4-Dichlorobenzene	ND	6.4	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Toluene-d8	92	(67 - 150)
Dibromofluoromethane	104	(59 - 133)
1,2-Dichloroethane-d4	108	(70 - 132)
4-Bromofluorobenzene	102	(57 - 150)


Roads and reporting limits have been adjusted for dry weight.

- B Method blank contramination. The associated method blank contains the impet analyte at a reportable level.

Kansas Dept of Health and Environment

Client Sample ID: SPI #5 0-6"

Radiochemistry

Lab Sample ID: F7L110245-001

Matrix:

Work Order: KDW4H Date Collected: Date Received:

12/05/07 1115 12/11/07 0945

SOLID

Parameter	Rosult	Qual	Total Unpert. (2 g+/-)	NL.	BEDC	Prep Date	Analysis Date	
Radium 226 by	EPA 903.0 MOD		300	:1/g	Batch (7345420	Y1d % 101	
Radium (226)	136		11	1	0.2	12/11/07	01/02/08	

Kansas Dept of Health and Environment Client Sample ID: SPI #5 1-2'

Radiochemistry

Lab Sample ID: F7L110245-002

Work Order: KDW4V Matrix:

SOLID

Date Collected:

12/05/07 1125

12/11/07 0945 Date Received:

Personeter	Result	Qual	Total Uncert. (2 o+/-)	RI.	NEC _	Frap Date	Anelysis Date	
Radium 226 by	BPA 903.0 MOD			pCi/g	Batch	# 7345420	Tld % 107	
Radium (226)	1150		93	1	0.7	12/11/07	01/02/08	

ROTE(S)

Date are incomplete without the case marrative.

MDC is determined by instrument performance only. Bold results are greater than the HDC

ROTE(S)

Data are incomplete without the case nerrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

REPORT OF ANALYSIS

ORGANIC CHEMISTRY

Analysis Code: VG Report To: BUREAU OF ENV REMEDIATION Lab Number: 498809 Address: ATTN: BOB BENNE, CURTIS SOB SUITE 410 Date Rec'd: 09/06/07 TOPEKA, KS 66612 Report Date: 09/14/07

Site ID No.: 08772288

Acct No: 4EM80 Sam Site: STANDARD PRODUCTS, INC. (SPI) - TRIP BLANK Collected By: REB- BER Dept Sample Type: WATER Program Code: EP No. Composited: Date: 09/05/07 Time: Depth:

	CONCENTRATION	Analysis	EPA
VOLATILE ORGANIC COMPOUNDS	(ug/L)	Date	Mechod
Vinyl Chloride	< 0.50	09/12/07	8260
1.1-Dichlorosthylene	< 0.50	09/12/07	8260
Dichloromethane	< 0.60	09/12/07	8260
trans 1,2-Dichloroethylene	< 0.50	09/12/07	260
cis 1,2-Dichloroethylene	< 0.50	09/12/07	8260
1,1,1-Trichloroethane	< 0.50	09/12/07	8260
Tetrachloromethane	< 0.50	09/12/07	8260
Benzene	< 0.50	09/12/07	8260
1,2-Dichloroethane	< 0.50	09/12/07	8260
Trichloroethylene	< 0.50	09/12/07	8260
1,2-Dichloropropane	< 0.50	09/12/07	8260
Toluena	< 0.50	09/12/07	8260
1, 1, 2-Trichloroethane	< 0.50	09/12/07	8260
Tetrachloroethylene	< 0.50	09/12/07	8260
Chlorobenzene	< 0.50	09/12/07	8260
Sthylbenzene	< 0.50	09/12/07	8260
Xylene	< 0.50	09/12/07	8260
Styrene	< 0.50	09/12/07	8260
1.4-Dichlorobenzene	< 0.50	09/12/07	8260
1,2-Dichlorobenzene	< 0.50	09/12/07	8260
1.2.4-frichlorobenzene	< 0.50	09/12/07	B260
Chloromethane	< 0.50	09/12/07	8260
Brogomethane	< 0.50	09/12/07	8260
Chloroethane	< 0.50	09/12/07	8260
1,1-Dichloroethane	< 0.50	09/12/07	8260
2.2-Dichloropropane	< D.50	09/12/07	8260
Trichloromethane (THM)	< 0.50	09/12/07	8260
1,1-Dichloropropene	< 0.50	09/12/07	8260
Dibromomethane	< 0.50	09/12/07	8260
Bromodichloromethane (THM)	< 0.50	09/12/07	8260
I,3-Dichloropropane	< 0.50	09/12/07	B260
Dibromochloromethane (THM)	< 0.50	09/12/07	8260
1.1.1.2-Tetrachloroethane	< 0.50	09/12/07	8260
Bromoform (THM)	< 0.50	09/12/07	B260
	< 0.50		
1,1,2,2-Tetrachlorosthans	< 0.50 < 0.50	09/12/07	8260
Bromobensene		09/12/07	B260
1,2,3-Trichloropropane ortho-Chlorotoluene	< 0.50 < 0.50	09/12/07	8260 8260
		09/12/07	
para-Chlorotoluene	< 0.50 < 0.50	09/12/07	8260
1,3-Dichlorobensene		09/12/07	8260
Ethylene Dibromide (EDB)	< 0.010	09/12/07	B260
1,2-Dibromo-3-chloropropane	< 0.020	09/12/07	8260
Fluorotrichloromethane	< 0.50	09/12/07	8260
Dichlorodifluoromethane	< 0.50	09/12/07	8360
Imopropylbenzene	< 0.50	09/12/07	8260
n-Propylbenzene	< 0.50	09/12/07	B260
1.3.5-Trimethylbenzene	< 0.50	09/12/07	8260
tert-Butylbenzene	< 0.50	09/12/07	8260
1,2,4-Trimethylbenzene	< 0.50	09/12/07	8260
sec-Butylbensene	< 0.50	09/12/07	8260
para-Isopropyltoluene	< 0.50	09/12/07	8260
n-Butylbenzene	< 0.50	09/12/07	8260
Naphthalene	< 0.50	09/12/07	B260
Methyl cert-butyl ether	< 0.50	09/12/07	8260

Duane R. Boline, Ph.D., Director

Laboratory Customer Service - (785) 296-1620

< - Not Detected at Indicated Level

RECEIVED

SEP 1 7 2007

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

ORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION Anal Address: ATTN: BOB BENNE, CURTIS SOB SUITE 410 TOPEKA, KS 66612 Lab Number: 498810 Date Rec'd: 09/06/07 Report Date: 09/14/07 Analysis Code: VG

Site ID No.: 08772288

Acct No: 4EM80 Sample Type: WATER Site: STANDARD PRODUCTS, INC. (SPI) - BACKGROUND Program Code: EP OUND No. Composited: Depth: 0017 Date: 09/05/07 Time: 11:40 Collected By: REB- BER

	CONCENTRATION	Analysis	EPA	
VOLATILE ORGANIC COMPOUNDS	/ ug/L)	Date	Method	
Vinyl Chloride	< 0.50	09/12/07	8260	
1,1-Dichloroethylene	< 0.50	09/12/07	8260	
Dichloromethane	< 0.60	09/12/07	8260	
trans 1,2-Dichloroethylene	< 0.50	09/12/07	8260	
cis 1,2-Dichloroethylene	8.6	09/12/07	8260	
l, l, l-Trichloroethane	< 0.50	09/12/07	8260	
Tetrachloromethan*	< 0.50	09/12/07	8260	
Benzene	< 0.50	09/12/07	8560	
1,2-Dichloroethane	< 0.50	09/12/07	8360	
Trichloroethylene	8.7	09/12/07	8260	
1,2-Dichloropropane	₹ 0.50	09/12/07	8360	
Toluene	< 0.50	09/12/07	8360	
1,1,2-Trichloroethane	< 0.50	09/12/07	8260	
Tetrachloroethylene	1.9	09/12/07	B260	
Chlorobenzene	< 0.50	09/12/07	8560	
Ethylbenzene	< 0.50	09/12/07	8360	
Xylene	< 0.50	09/12/07	8560	
Styrene	< 0.50	09/12/07	8360	
1,4-Dichlorobensene	< 0.50	09/12/07	8360	
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	< 0.50	09/12/07	8360	
Chloromethana	< 0.50 < 0.50	09/12/07	8260	
Cnioromethane	< 0.50 < 0.50	09/12/07 09/12/07	8360	
Sromomethane Chloroethane	< 0.50	09/12/07	8260 8260	
1,1-Dichloroethane	< 0.50	09/12/07	8260	
2.2-Dichloropropane	< 0.50 < 0.50	09/12/07	8260	
Trichloromethane (THM)	< 0.50	09/12/07	8350	
1.1-Dichloropropens	< 0.50	09/12/07	6260	
Dibromomethane	< 0.50	09/12/07	8260	
Bromodichloromethane (THM)	< 0.50	09/12/07	8260	
1.3-Dichloropropane	< 0.50	09/12/07	8260	
Dibromochloromethane (THM)	< 0.50	09/12/07	B260	
1.1.1.2-Tetrachloroethane	< 0.50	09/12/07	8260	
Bromoform (THM)	< 0.50	09/12/07	8260	
1,1,2,2-Tetrachloroethane	< 0.50	09/12/07	8260	
Bromobenzene	< 0.50	09/12/07	8260	
1.2.3-Trichloropropane	< 0.50	09/12/07	8260	
ortho-Chlorotoluene	< 0.50	09/12/07	8260	
para-Chlorotoluena	< 0.50	09/12/07	8260	
1,3-Dichlorobenzene	< 0.50	09/12/07	8360	
Ethylene Dibromide (EDB)	< 0.010	09/12/07	8260	
1,2-Dibromo-3-chloropropane	< 0.020	09/12/07	8260	
Fluorotrichloromethane	< 0.50	09/12/07	B260	
Dichlorodifluoromethane	< 0.50	09/12/07	8260	
Isopropylbenzene	< 0.50	09/12/07	8260	
n-Propylbenzene	< 0.50	09/12/07	8260	
1,1,5-Trimethylbensene	< 0.50	09/12/07	8260	
tert-Butylbenzene	< 0.50	09/12/07	8260	
1,2,4-Trimethylbenzens	< 0.50	09/12/07	8260	
sec-Butylbensene	< 0.50	09/12/07	8260	
para-Isopropyltoluene	< 0.50	09/12/07	8260	
n-Butylbenzene	< 0.50	09/12/07	8260	
Naphthalene	< 0.50	09/12/07	8260	
Methyl tert-butyl ether	< 0.50	09/12/07	8260	

Comment: A trace of chlorodifluoromethane was indicated.

Chemist: Richard L. Pierce

< - Not Detected at Indicated Level RECEIVED

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641 CLIA COLOMBIA - (785) 296-1641 SEP 1 7 2007

REPORT OF ANALYSIS

ORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION Analysis Code: VG Lab Number: 498811 Address: ATTN: BOB BENNE, CURTIS SOB SUITE 410 Date Rec'd: 09/06/07 TOPEKA, KS 66612 Report Date: 09/14/07

Site ID No.: 08772288

Acct No: 4EM80 Site: STANDARD PRODUCTS, INC. (SPI) - #1 Collected By: REB- BER

Sample Type: WATER Program Code: EP

No. Composited: 5/07 Time: 15:55 Depth: 0017 Date: 09/05/07

	CONCENTRATION	Analysis	EPA
VOLATILE ORGANIC COMPOUNDS	(ug/L)	Date	Method
/inyl Chloride	< 0.50	09/12/07	8260
.1-Dichloroethylene	< 0.50	09/12/07	8260
ichloromethane	< 0.50	09/12/07	8260
rans 1,2-Dichloroethylene	< 0.50	09/12/07	8260
is 1,2 Dichlorosthylene	0.72	09/12/07	9260
1,1-Trichloroethane	3.5	09/12/07	8260
etrachloromethane	< 0.50	09/12/07	8260
ensene	< 0.50	09/12/07	B260
,2-Dichloroethane	< 0.50	09/12/07	8260
richloroethylene	10	09/12/07	8260
, 2-Dichloropropane	< 0.50	09/12/07	826D
oluene	< 0.50	09/12/07	8260
.1,2-Trichloroethane	< 0.50	09/12/07	8260
etrachloroethylene	1.1	09/12/07	B260
hlorobenzene	< 0.50	09/12/07	8260
thylbenzene	< 0.50	09/12/07	8260
ylene	< 0.50	09/12/07	8260
tyrene	< 0.50	09/12/07	8260
,4-Dichlorobenzene	< 0.50	09/12/07	8260
,2-Dichlorobenzene	< 0.50	09/12/07	8260
. 2, 4-Trichlorobenzene	< 0.50	09/12/07	8260
hloromethane	< 0.50	09/12/07	8260
Bromomethane	< 0.50	09/12/07	8260
hloroethane	< 0.50	09/12/07	8260
1,1-Dichloroethane	< 0.50	09/12/07	8260
2,2-Dichloropropane	< 0.50	09/12/07	B260
Trichloromethane (THM)	< 0.50	09/12/07	8260
, 1-Dichloropropene	< 0.50	09/12/07	8260
Dibromomethane	< 0.50	09/12/07	8260
Bromodichloromethane (THM)	< 0.50	09/12/07	8260
1,3-Dichloropropane	< 0.50	09/12/07	8260
ibromochloromethane (THM)	< 0.50	09/12/07	8260
1,1,1,2-Tetrachloroethane	< 0.50	09/12/07	8260
Bromoform (THM)	< 0.50	09/12/07	8260
1,1,2,2-Tetrachloroethane	< 0.50	09/12/07	8260
romobenzene	< 0.50	09/12/07	8260
1,2,3-Trichloropropane	< 0.50	09/12/07	8260
ortho-Chlorotoluene	< 0.50	09/12/07	8260
para-Chlorotoluene	< 0.50	09/12/07	8260
,3-Dichlorobensene	< 0.50	09/12/07	8260
Ethylene Dibromide (EDB)	< 0.010	09/12/07	8260
1,2-Dibromo-3-chloropropane	< 0.020	09/12/07	8260
Fluorotrichloromethane	< 0.50	09/12/07	8260
Dichlorodifluoromethane	< 0.50	09/12/07	8260
Isopropylbenzene	< 0.50	09/12/07	8260
n-Propylbenzene	< 0.50	09/12/07	8260
1,3,5-Trimethylbenzene	< 0.50	09/12/07	8260
tert-Butylbenzene	< 0.50	09/12/07	8260
1,2,4-Trimethylbenzene	< 0.50	09/12/07	8260
sec-Butylbensens	< 0.50	09/12/07	8260
para-Isopropyltoluene	< 0.50	09/12/07	8260
n-Butylbenzene	< 0.50	09/12/07	8260
Naphthalene	< 0.50	09/12/07	8260
Methyl tert-butyl ether	< 0.50	09/12/07	8260

Chemist: Richard L. Pierce

< - Not Detected at Indicated Level

SEP 1 7 2007

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

ORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION Analysis Code: VG Lab Number: 498812 ATTN: BOB BENNE, CURTIS SOB SUITE 410 Address: Date Rec'd: 09/06/07 TOPEKA, KS 66612 Report Date: 09/14/07

Site ID No.: 08772288

Acct No: 4EM80 Site: STANDARD PRODUCTS, INC. (SPI) - #2 Collected By: REB- BER

Sample Type: WATER

Program Code: EP No. Composited:

Depth: Date: 09/05/07 Time: 15:05

CONCENTRATION SPA Method Analysis VOLATILE ORGANIC COMPOUNDS ug/L) 09/12/07 Vinyl Chloride < 0.50 **8260** 1,1-Dichloroethylens Dichloromethane < 0.50 09/12/07 09/12/07 8260 trans 1.2-Dichloroethylene < 0.50 15 09/12/07 09/12/07 8260 8260 cis 1,2-Dichloroethylene 1,1,1-Trichloroethane < 0.50 09/12/07 8260 Tetrachloromethane 09/12/07 Benzene 1.2-Dichloroethane 8260 < 0.50 8.9 < 0.50 09/12/07 8260 Trichloroethylene 8260 1.2-Dichloropropane 09/12/07 8260 < 0.50 < 0.50 < 0.50 1.6 < 0.50 8260 8260 Toluene 1,1,2-Trichloroethane 09/12/07 09/12/07 09/12/07 Tetrachloroethylene Chlorobensene 8260 Ethylbensene 09/12/07 8260 < 0.50 09/12/07 8260 8260 Styrene 1.4-Dichlorobenzene 09/12/07 8260 8260 1,2-Dichlorobenzene
1,2,4-Trichlorobenzene 09/12/07 8260 Chloromethane Bromomethane 09/12/07 8260 8260 09/12/07 09/12/07 8260 8260 Chloroethane 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane (THM) 1,1-Dichloropropene 09/12/07 8260 09/12/07 09/12/07 8260 8260 Dibromomethane < 0.50 < 0.50 < 0.50 09/12/07 09/12/07 8260 8260 Bromodichloromethane (THM) 09/12/07 1.3-Dichloropropane 8260 Dibromochloromethane (THM 1,1,1,2-Tetrachloroethane 09/12/07 8260 Bromoform (THM) < 0.50 < 0.50 < 0.50 09/12/07 8260 1,1,2,2-Tetrachloroethane 8260 Bromobenzene 09/12/07 1,2,3-Trichloropropane ortho-Chlorotoluene 09/12/07 09/12/07 8260 8260 para-Chlorotoluene 09/12/07 8260 8260 3-Dichlorobenzen 09/12/07 09/12/07 Ethylene Dibromide (EDB) < 0.010 8260 < 0.010 < 0.020 < 0.50 < 0.50 < 0.50 1,2-Dibromo-3-chloropropane Fluorotrichloromethane 09/12/07 8260 B260 Dichlorodifluoromethane 09/12/07 8260 180propylbenzene n-Propylbenzene 1,3,5-Trimethylbenzene tert-Butylbenzene 09/12/07 09/12/07 8260 < 0.50 < 0.50 < 0.50 < 0.50 09/12/07 R260 1.2.4-Trimethylbenzene 09/12/07 09/12/07 8260 8260 sec-Butylbenzer para-Isopropyltoluene n-Butylbenzene Naphthalene 09/12/07 8260 8260 8260 Methyl tert-butyl ether

Chemist: Richard L. Pierce

< - Not Detected at Indicated Level

SEP 1 7 2007

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Leboratory Fax - (785) 296-1641

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 298-1641

Acct No: 4EM80

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

ORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION Anal Address: ATTN: BOB BENNE, CURTIS SOB SUITE 410 TOPEKA, KS 66612 Analysis Code: VG

Lab Number: 498813 Date Rec'd: 09/06/07 Report Date: 09/14/07

Site ID No.: 08772288

Depth:

Sample Type: WATER

Program Code: EP No. Composited: 5/07 Time: 13:05

Site: STANDARD PRODUCTS, INC. (SPI) - #4 Collected By: REB- BER

Date: 09/05/07

	CONCENTRATION	Analysis	EPA
VOLATILE ORGANIC COMPOUNDS	(ug/L)	Date	Method
Vinyl Chloride	< 0.50	09/12/07	8260
1,1-Dichloroethylene	< 0.50	09/12/07	8260
Dichloromethane	< 0.50	09/12/07	8260
trang 1,2-Dichloroethylene	< 0.50	09/12/07	8260
cis 1,2-Dichloroethylene	13	09/12/07	8260
1,1,1-Trichloroethane	< 0.50	09/12/07	8260
Tetrachloromethane	< 0.50	09/12/07	8260
Benzene	< 0.50	09/12/07	8260
1,2-Dichloroethane	< 0.50	09/12/07	8260
Trichloroethylene	12	09/12/07	8260
1,2-Dichloropropane	< 0.50	09/12/07	8260
Toluene	< 0.50	09/12/07	8260
1,1,2-Trichloroethane	< 0.50	09/12/07	8260
Tetrachloroethylene	3.9	09/12/07	8260
Chlorobenzene	< 0.50	09/12/07	8260
Ethylbenzene	< 0.50	09/12/07	8260
Xylene	< 0.50	09/12/07	8260
Styrene	< 0.50	09/12/07	8260
1,4-Dichlorobentene	< 0.50	09/12/07	8260
1.2-Dichlorobenzene	< 0.50	09/12/07	8260
1,2,4-Trichlorobenzene	< 0.50	09/12/07	8260
Chloromethane	< 0.50	09/12/07	8260
Bromomethane	< 0.50 -	09/12/07	8260
Chloroethane	< 0.50	09/12/07	8260
1,1-Dichloroethane	< 0.50	09/12/07	8260
2,2-Dichloropropane	< 0.50	09/12/07	8260
Trichloromethane (THM)	< 0.50	09/12/07	B260
1,1-Dichloropropene	< 0.50	09/12/07	8260
Dibromomethane	< 0.50	09/12/07	8260
Bromodichloromethane (THM)	< 0.50	09/12/07	6260
1,3-Dichloropropane	< 0.50	09/12/07	8260
Dibromochloromethane (THM)	< 0.50	09/12/07	8260
1,1,1,2-Tetrachloroethane	< 0.50	09/12/07	8260
Bromoform (THM)	< 0.50	09/12/07	8260
1,1,2,2-Tetrachloroethane	< 0.50	09/12/07	8260
Bromobenzene	< 0.50	09/12/07	8260
1,2,3-Trichloropropane	< 0.50	09/12/07	8260
ortho-Chlorotoluene	< 0.50	09/12/07	8260
para-Chlorotoluene	< 0.50	09/12/07	8260
1,3-Dichlorobenzene	< 0.50	09/12/07	8260
Ethylene Dibromide (EDB)	< D. D1D	09/12/07	8260
1,2-Dibromo-3-chloropropane	. < 0.020	09/12/07	8260
Fluorotrichloromethane	< 0.50	09/12/07	8260
Dichlorodifluoromethane	< 0.50	09/12/07	8260
Isopropylbenzene	< 0.50	09/12/07	8260
n-Propylbensene	< 0.50	09/12/07	8260
1,1,5-Trimethylbenzene	< 0.50	09/12/07	8260
tert-Butylbensene	< 0.50	09/12/07	8260
1,2,4-Trimethylbenzene	< 0.50	09/12/07	8260
sec-Butylbenzene	< 0.50	09/12/07	8260
para-Isopropyltoluene	< 0.50	09/12/07	8260
n-Butylbenzene	< 0.50	09/12/07	8260
Naphthalene	< 0.50	09/12/07	8260
Methyl tert-butyl ether	< 0.50	09/12/07	826D

Chemist: Richard L. Pierce 🌶

< - Not Detected at Indicate VED

SEP 1 7 200/

BUREAU OF

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

ORGANIC CHEMISTRY

Report To: BUREAU OF ENV. REMEDIATION Ana. Address: ATTN: BOB BENNE, CURTIS SOB SUITE 410 Analysis Code: VG

TOPEKA, KS 66612

Lab Number: 503197 Date Rec'd: 12/06/07 Report Date: 12/14/07

Site ID No.: 08772288

ACCT NO: 4EM80
Site: STANDARD PRODUCTS, INC. - SPI TRIP BLANK
Collected By: REB - BER
De Sample Type: WATER Program Code: EP

No. Composited: Date: 12/05/07 Time:

Depth:

VOLATILE ORGANIC COMPOUNDS	CONCENTRATION (ug/L)	Analysis Date	EPA Method
Vinyl Chloride	< 0.50	12/12/07	8260
1,1-Dichloroethylene	< 0.50	12/12/07	8260
Dichloromethane	< 0.50	12/12/07	8260
rans 1,2-Dichloroethylene	€ 0.50	12/12/07	8260
is 1,2-Dichlorosthylene	€ 0.50	12/12/07	8260
1,1-Trichloroethane	< 0.50	12/12/07	B260
Tetrachloromethane	< 0.50	12/12/07	8260
Benzene	< 0.50	12/12/07	8260
1.2-Dichloroethane	< 0.50	12/12/07	B260
Prichloroethylene	< 0.50	12/12/07	8260
1,2-Dichloropropane	< 0.50	12/12/07	8260
Toluene	< 0.50	12/12/07	. B260
1,1,2-Trichloroethane	< 0.50	12/12/07	8260
Tetrachloroethylene	€ 0.50	12/12/07	8260
Chlorobenzene	< 0.50	12/12/07	8260
Chioropenzene Ethvlbenzene	< 0.50	12/12/07	8260
stnylbenzene (vlene	< 0.50	12/12/07	8260
Stvrene	< 0.50	12/12/07	8260 8260
1.4-Dichlorobenzene	< 0.50	12/12/07	8260
1.2-Dichlorobenzene	< 0.50	12/12/07	8260
1,2.4-Trichlorobensene	< 0.50	12/12/07	826D
	< 0.50	12/12/07	8260
Chloromethane	< 0.50		8260
Bromomethane	< 0.50	12/12/07 12/12/07	8260
Chloroethane	< 0.50	12/12/07	8260 8260
1,1-Dichloroethane 2,2-Bichloropropane	< 0.50	12/12/07	8260
	< 0.50		
Trichloromethane (THM)	< 0.50	12/12/07	8260 8260
1,1-Dichloropropene	< 0.50	12/12/07	8260
Dibromomethane	< 0.50	12/12/07	
Bromodichloromethane (THM)	< 0.50	12/12/07 12/12/07	8260 8260
1,3-Dichloropropane	< 0.50	12/12/07	8260 8260
Dibromochloromethane (THM)			
1,1,1,2-Tetrachloroethane	< 0.50	12/12/07	8260
Bromoform (THM)	< 0.50	12/12/07	8260
1,1,2,2-Tetrachloroethane	< 0.50	12/12/07	8260
Bromobenzene	< 0.50	12/12/07	8260
1,2,3-Trichloropropane	< 0.50	12/12/07	8260
ortho-Chlorotoluene	< 0.50	12/12/07	8260
para-Chlorotoluene	< 0.50	12/12/07	8260
1,3-Dichlorobenzene	< 0.50	12/12/07	8260
Ethylene Dibromide (EDB)	< 0.010	12/12/07	B360
1,2-Dibromo-3-chloropropane	< 0.020	12/12/07	8260
Pluorotrichloromethane	< 0.50	12/12/07	8260
Dichlorodifluoromethane	< 0.50	12/12/07	8260
Isopropylbenzene	< 0.50	12/12/07	8260
n-Propylbenzene	< 0.50	12/12/07	8260
1,3,5-Trimethylbenzene	< 0.50	12/12/07	8260
tert-Butylbenzene	< 0.50	12/12/07	8260
1,2,4-Trimethylbenzene	< 0.50	12/12/07	B260
sec-Butylbenzene	< 0.50	12/12/07	8260
para-Isopropyltoluene	< 0.50	12/12/07	8260
n-Butylbenzene	< 0.50	12/12/07	B260
Naphthalene	< 0.50	12/12/07	8260
Methyl tert-butyl ether	< 0.50	12/12/07	8260

Chemist: Richard L. Pierce

< - Not Detected at Indicated Level

DEC 1 8 2007

Duane R. Bolline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641 CLIA D64825

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641

REPORT OF ANALYSIS

ORGANIC CHEMISTRY

Report To: BUREAU OF ENV. REMEDIATION Analysis Code: VG Address:

ATTN: BOB BENNE, CURTIS SOB SUITE 410 TOPEKA, KS 66612

Lab Number: 503198
Date Rec'd: 12/06/07
Report Date: 12/14/07

Site ID No.: 08772288

Site: STANDARD PRODUCTS, INC. - SPI #5

Sample Type: WATER

Program Code: EP No. Composited:

Collected By: REB - BER

Acct No: 4EM80

Date: 12/05/07 Time: 12:10

VOLATILE ORGANIC COMPOUNDS	CONCENTRATION (uq/L)	Analysis Date	EPA Method
Vinyl Chloride	< 0.50	12/12/07	8260
1.1-Dichloroethylene	< 0.50	12/12/07	8260
Dichloromethane	< 0.50	/ 12/12/07	8260
trans 1,2-Dichloroethylene	< 0.50 0.00%	// n.07 12/12/07	B260
cia 1,2-Dichloroethylene	9.6 0.0010	12/12/07	8260
1,1,1-Trichloroethane	0.50 0.50	// 12/12/07	8260
Tetrachloromethane	(0.50 1.00 0 /3 /	12/12/07	8260
Benzene	< 0.50	12/12/07	B260
1,2-Dichloroethane	< 0.50 ONA /	12/12/07	8260
Trichloroethylene	13 . 0.6/2/	12/12/07	8260
1,2-Dichloropropane	< 0.50	12/12/07	8260
Toluene	1.0 0.001/2	- / 13/12/07	B260
1,1,2-Trichloroethane	< 0.50	A 005 12/12/07	8260
Tetrachloroethylene	3.9 0.0031/2	0.003 12/12/07	8260
Chlorobenzene			8260
Ethylbenzene	< 0.50	12/12/07	8260
Xylene	< 0.50 < 0.50	12/12/07	8260 8260
Styrene		12/12/07	
1,4-Dichlorobenzene	< 0.50 < 0.50	12/12/07	8260 8260
1,2-Dichlorobenzene	< 0.50	12/12/07 12/12/07	8260
1,2,4-Trichlorobenzene Chloromethane	< 0.50	12/12/07	8260
Entoromethane Bromomethane	< 0.50	12/12/07	8260
Chloroethane	< 0.50	12/12/07	8260
1.1-Dichloroethane	< 0.50	12/12/07	8260
2.2-Dichloropropane	< 0.50	12/12/07	8260
Trichloromethane (THM)	< 0.50	12/12/07	8260
1,1-Dichloropropene	< 0.50	12/12/07	8260
Dibromomethane	< 0.50	12/12/07	8260
Bromodichloromethane (THM)	< 0.50	12/12/07	8260
1.3-Dichloropropane	< 0.50	12/12/07	8260
Dibromochloromethane (THM)	< 0.50	12/12/07	8260
1.1.1.2-Tetrachloroethane	< 0.50	12/12/07	8260
Bromoform (THM)	< 0.50	12/12/07	8260
1, 1, 2, 2-Tetrachloroethane	< 0.50	12/12/07	8260
Bromobensene	< 0.50	12/12/07	8260
1,2,3-Trichloropropane	< 0.50	12/12/07	8260
ortho-Chlorotoluene	< 0.50	12/12/07	8260
para-Chlorotoluene	< 0.50	12/12/07	8260
1,3-Dichlorobenzene	< 0.50	12/12/07	8260
Ethylene Dibromide (EDB)	< 0.010	12/12/07	B260
1,2-Dibromo-3-chloropropane	< 0.020	12/12/07	8260
Fluorotrichloromethane	< 0.50	12/12/07	8260
Dichlorodifluoromethane	< 0.50	12/12/07	8260
Isopropylbenzene	< 0.50	12/12/07	8260
n-Propylbenzene	< 0.50	12/12/07	8260
1.3.5-Trimethylbenzene	< 0.50	12/12/07	8260
tert-Butylbenzene	< 0.50	12/12/07	8260
1,2,4-Trimethylbenzene	< 0.50	12/12/07	8260
sec-Butylbenzene	< 0.50	12/12/07	8260
para-Isopropyltoluene	< 0.50	12/12/07	8260
n-Butylbenzene	< 0.50 < 0.50	12/12/07	8260 8260
Naphthalene	< 0.50	12/12/07	8260
Methyl tert-butyl ether	· 0.50	12/12/07	0260

Duane R. Boline, Ph.D., Director

Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 298-1641

Chemist: Richard L. Pierce

< - Not Detected at Indicated Level

DEC 1 8 2007

BUREAU OF

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION ATTN: Bob Benne

Analysis Code: PT

Lab Number: 498805

CURTIS SOB SUITE 410

4EM80 Site ID: 08772288 Account Code: EP

TOPEKA KS 66612

Collection Location: Standard Products, Inc. (SPI) - BCKGRND

Collector: REB - BER
Date/Time Collected: 09/05/07 00:00

Matrix: Water

ter Collect Depth: Date/Time Received: 09/06/07 15:28

Sample Comments: filtered H2O

Parameter	Analytical Result	Units	Analysis Date	Analytical Method
Aluminum	< 0.050	mg/L	09/21/07	EPA 200.7
Antimony	< 0.050	mg/L	09/21/07	EPA 200.7
Arsenic	< 0.050	mg/L	09/21/07	EPA 200.7
Barium	0.098	mg/L	09/21/07	EPA 200.7
Beryllium	< 0.0010	mg/L	09/21/07	EPA 200.7
Boron	0.27	mg/L	09/21/07	EPA 200.7
Cadmium	< 0.0050	mg/L	09/21/07	EPA 200.7
Calcium	170	mg/L	09/21/07	EPA 200.7
Chromium	< 0.010	mg/L	09/21/07	EPA 200.7
Cobalt	< 0.010	mg/L	09/21/07	EPA 200.7
Copper	< 0.010	mq/L	09/21/07	EPA 200.7
Iron	< 0.010	mg/L	09/21/07	EPA 200.7
Lead	< 0.050	mg/L	09/21/07	EPA 200.7
Magnesium	28	mg/L	09/21/07	EPA 200.7
Manganese	0.13	mg/L	09/21/07	EPA 200.7
Mercury	< 0.50	ug./L	09/19/07	EPA 245.1
Molybdenum	0.021	mq/L	09/21/07	EPA 200.7
Nickel	0.039	mg/L	09/21/07	EPA 200.7
Potessium	6.2	mq/L	09/21/07	EPA 200.7
Selenium	< 0.050	mg/L	09/21/07	EPA 200.7
Silica	16	mg/L	09/21/07	EPA 200.7
Silver	< 0.010	mg/L	09/21/07	EPA 200.7
Sodium	130	mg/L	09/21/07	EPA 200.7
Thallium	< 0.050	mg/L	09/21/07	EPA 200.7
Vanadium	< 0.0050	mg/L	09/21/07	EPA 200.7
Zinc	0.013	mg/L	09/21/07	EPA 200.7

Reporting Analyst: JAB Date Reported: 09/25/0 Copies To: File

< - Not Detected at Indicated Level
* - Holding Time Exceeded</pre>

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fex - (785) 296-1641

BUREAU OF ENVIRONMENTAL REMEDIATION

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 498806

ATTN: Bob Benne CURTIS SOB SUITE 410 TOPEKA KS 66612

CURTIS SOB SUITE 410

Site ID: 08772288 Account Code: EP

Collection Location: Standard Products, Inc. (SPI) - #1

Collector: REB - BER
Date/Time Collected: 09/05/07 00:00 ter Collect Depth: Date/Time Received: 09/06/07 15:29 Matrix: Water

Sample Comments: filtered H2O

Parameter	Analytical Result	Units	Analysis Date	Analytical Method
Aluminum	< 0.050	mg/L	09/21/07	EPA 200.7
Antimony	< 0.050	mg/L	09/21/07	EPA 200.7
Arsenic	< 0.050	mg/L	09/21/07	EPA 200.7
Barium	0.13	mg/L	09/21/07	EPA 200.7
Beryllium	< 0.0010	mg/L	09/21/07	EPA 200.7
Boron	0.34	mg/L	09/21/07	EPA 200.7
Cadmium	< 0.0050	mg/L	09/21/07	EPA 200.7
Calcium	140	mg/L	09/21/07	EPA 200.7
Chromium	< 0.010	mag/L	09/21/07	EPA 200.7
Cobalt	0.012	mg/L	09/21/07	EPA 200.7
Copper	< 0.010	mg/L	09/21/07	EPA 200.7
Iron	0.043	mg/L	09/21/07	EPA 200.7
Lead	< 0.050	mg/L	09/21/07	EPA 200.7
Magnesium	15	mg/L	09/21/07	EPA 200.7
Manganese	2.3	ing/L	09/21/07	EPA 200.7
Mercury	< 0.50	ug/L	09/19/07	EPA 245.1
Molybdenum	0.029	sq/L	09/21/07	EPA 200.7
Nickel	0.025	mg/L	09/21/07	EPA 200.7
Potassium	8,4	mg/L	09/21/07	EPA 200.7
Selenium	< 0.050	mg/L	09/21/07	EPA 200.7
Silica	23	ing/L	09/21/07	EPA 200.7
Silver	< 0.010	mg/L	09/21/07	EPA 200.7
Sodium	19	mg/L	09/21/07	EPA 200.7
Thallium	< 0.050	mg/L	09/21/07	EPA 200.7
Vanadium	< 0,0050	ng/L	09/31/07	EPA 200.7
Zinc	0.011	mg/L	09/21/07	EPA 200.7

Reporting Analyst: JAB Date Reported: 10/02/07 Copies To: File

Not Detected at Indicated Level
 Holding Time Exceeded

RECEIVED

OCT 0 4 2007

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report to: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 498807

ATTN: Bob Benne

Site ID: 08772288

TOPEKA KS 66612

Account Code: EP

Collection Location: Standard Products, Inc. (SPI) - #2
Collector: REB - BER
Date/Time Collected: 09/05/07 00:00 Matrix: Water

ter Collect Depth: Date/Time Received: 09/06/07 15:29

Sample Comments: filtered H2O

Parameter	Analytical Result	Unite	Analysis Date	Analytical Method
Aluminum	< 0.050	mg/L	09/21/07	EPA 200.7
Antimony	< 0.050	mg/L	09/21/07	EPA 200.7
Arsenic	< 0.050	mg/L	09/21/07	EPA 200.7
Barium	0.086	mg/L	09/21/07	EPA 200.7
Beryllium	< 0.0010	mg/L	09/21/07	EPA 200.7
Boron	0.28	mg/L	09/21/07	EPA 200.7
Cadmium	< 0.0050	mg/L	09/21/07	EPA 200.7
Calcium	150	mg/L	09/21/07	EPA 200.7
Chromium	< 0.010	mg/L	09/21/07	EPA 200.7
Cobalt	< 0.010	mg/L	09/21/07	EPA 200.7
Copper	< 0.010	mg/L	09/21/07	EPA 200.7
Tron	0.73	mg/L	09/21/07	EPA 200.7
Lead	< 0.050	mg/L	09/21/07	EPA 200.7
Magnesium	28	mg/L	09/21/07	. EPA 200.7
Hanganese	0.24	mg/L	09/21/07	EPA 200.7
Mercury	< 0.50	ug/L	09/19/07	EPA 245.1
Molybdenum	0.021	· mg/L	09/21/07	EPA 200.7
Nickel	0.039	mg/L	09/21/07	EPA 200.7
Potassium	6.2	mg/L	09/21/07	EPA 200.7
Selenium	< 0.050	mg/L	09/21/07	EPA 200.7
Silica	14	mg/L	09/21/07	EPA 200.7
Silver	< 0.010	mg/L	09/21/07	EPA 200.7
Sodium	140	mg/L	09/21/07	EPA 200.7
Thallium	< 0.050	mg/L	09/21/07	EPA 200.7
Vanadium	< 0.0050	mg/L	09/21/07	EPA 200.7
Zinc	0.032	mg/L	09/21/07	EPA 200.7

Reporting Analyst: JAB Date Reported: 10/02/07 Copies To: File

< - Not Detected at Indicated Level * - Holding Time Exceeded

Duane R. Boilne, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641

OCT 0 4 2007

Duane R. Boline, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV REMEDIATION

Analysis Code: PT Lab Number: 498808

ATTN: Bob Benne

CURTIS SOB SUITE 410 TOPEKA KS 66612

Site ID: 08772288 Account Code: EP

Collection Location: Standard Products, Inc. (SPI) - #4 Collector: REB - BER Matrix: Water Date/Time Collected: 09/05/07 00:00 Date

ter Collect Depth: Date/Time Received: 09/06/07 15:30

Sample Comments: Filtered H2O

Parameter	Analytical Result	Units	Anelysis Date	Analytical Method
Aluminum	< 0.050	mg/L	09/21/07	EPA 200.7
Antimony	< 0.050	mg/L	09/21/07	EPA 200.7
Arsenic	< 0.050	mg/L	09/21/07	EPA 200.7
Barium	0.074	mg/L	09/21/07	EPA 200.7
Beryllium	< 0.0010	mg/L	09/21/07	EPA 200.7
Boron	0.30	mg/L	09/21/07	EPA 200.7
Cadmium	< 0.0050	mg/L	09/21/07	EPA 200.7
Calcium	160	mg/L	09/21/07	EPA 200.7
Chromium	< 0.010	mg/L	09/21/07	EPA 200.7
Cobalt	< 0.010	mg/L	09/21/07	EPA 200.7
Copper	< 0.010	mg/L	09/21/07	EPA 200.7
Iron	0.016	mg/L	09/21/07	EPA 200.7
Lead	< 0.050	mg/L	09/21/07	EPA 200.7
Magnesium	28	mg/L	09/21/07	EPA 200.7
Manganese	0.22	mg/L	09/21/07	EPA 200.7
Mercury	· < 0.50	ug/L	09/19/07	EPA 245.1
Molybdenum	0.021	mg/L	09/21/07	EPA 200.7
Nickel	0.037	mg/L	09/21/07	EPA 200.7
Potassium	5.9	mg/L	09/21/07	EPA 200.7
Selenium	< 0.050	mg/L	09/21/07	EPA 200.7
Silica	14	mg/L	09/21/07	EPA 200.7
Silver	< 0.010	mg/L	09/21/07	EPA 200.7
Sodium	120	mg/L	09/21/07	EPA 200.7
Thallium	< 0.050	mg/L	09/21/07	EPA 200.7
Vanadium	< 0.0050	mg/L	09/21/07	EPA 200.7
Zinc	0.027	mg/L	09/21/07	EPA 200.7

Reporting Analyst: JAB Date Reported: 10/02/07 Copies To: File

< - Not Detected at Indicated Level * - Holding Time Exceeded

RECEIVED

OCT 0 4 2007

Duane R. Bollne, Ph.D., Director Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641 CLIA No. 17D0648254

BUREAU OF

DIVISION OF HEALTH & ENVIRONMENTAL LABORATORIES Kansas Department of Health and Environment Forbes Field, Bldg. 740, Topeka, Kansas 66620-0001

REPORT OF ANALYSIS

INORGANIC CHEMISTRY

Report To: BUREAU OF ENV. REMEDIATION

Analysis Code: PT Lab Number: 503199

ATTN: Bob Benne CURTIS SOB, SUITE 410 TOPEKA KS 66612

4EM80 Site ID: 08772288

Account Code: EP

Collection Location: Standard Products, Inc. - SPI #5 Collector: REB - BER

Matrix: Water Date/Time Collected: 12/05/07 00:00

ter Collect Depth: Date/Time Received: 12/06/07 14:43

Sample Comments: The water is filtered

Parameter	Analytical Result	Units	Analysis Date	Analytical Method
Aluminum	< 0.050	mg/L	12/20/07	EPA 200.7
Antimony	< 0.050	mg/Ն	12/20/07	EPA 200.7
Arsenic	< 0.050	mg/L	12/20/07	EPA 200.7
Barium	0.11	mg/L	12/20/07	EPA 200.7
Beryllium	< 0.0010	mg/L	12/20/07	EPA 200.7
Boron	0.34	mg/L	12/20/07	EPA 200.7
Cadmi um	< 0.0050	mg/L	12/20/07	EPA 200.7
Calcium	170	mg/L	12/20/07	EPA 200.7
Chromium	< 0.010	mg/L	12/20/07	EPA 200.7
Cobalt	0.018	mg/L	12/20/07	EPA 200.7
Copper	< 0.010	mg/L	12/20/07	EPA 200.7
Iron	< 0.010	mg/L	12/20/07	EPA 200.7
Lead	< 0.050	mg/L	12/20/07	BPA 200.7
Magnesium	20	mg/L	12/20/07	EPA 200.7
Manganese	0.60	mg/L	12/20/07	EPA 200.7
Mercury	< 0.50	ug/L	12/14/07	EPA 245.1
Molybdenum	< 0.020	mg/L	12/20/07	EPA 200.7
Nickel	0.018	mg/L	12/20/07	EPA 200.7
Potassium	6.7	mg/L	12/20/07	EPA 200.7
Selenium	< 0.050	mg/L	12/20/07	EPA 200.7
Silica	21	mg/L	12/20/07	EPA 200.7
Silver	< 0.010	mg/L	12/20/07	EPA 200.7
Sodium	57	mg/L	12/20/07	EPA 200.7
Thallium	< D.050	mg/L	12/20/07	EPA 200.7
Vanadium	< 0.0050	mg/L	12/20/07	EPA 200.7
Zinc	0.047	mg/L	12/20/07	EPA 200.7

Duane R. Boline, Ph.D., Director

Laboratory Customer Service - (785) 296-1620 Laboratory Fax - (785) 296-1641

Reporting Analyst: JAB Date Reported: 12/27/07 Copies To: File

< - Not Detected at Indicated Level * - Holding Time Exceeded

RECEIVED

JAN 0 2 2008

BUREAU OF

ENVIRONMENTAL REMEDIATION

Kansas Dept of Health and Environment Client Sample ID: SPI #2

Radiochemistry

Lab Sample ID: F7L110245-007

Work Order: KDW47 Matrix: WATER

Date Collected: Date Received:

12/05/07 0000 12/11/07 0945

Kansas Dept of Health and Environment Client Sample ID: SPI #4

Radiochemistry

Lab Sample ID: F7L110245-008 Work Order:

Matrix:

KDW49 WATER Date Collected:

12/05/07 0000

Date Received: 12/11/07 0945

Parameter	Result	qua1	Total Uncert. (2 g+/-)	Pī.	Mode	Prep Date	Analysis Date	
Radium 226 by Radium (226)	EPA 903.0 MCD 0.42	J	9.18	pCi/L 1.00	Batch (7345421 12/11/07	Tld % 103 12/26/07	

Total Uncert. Analysis Date (2 a+/-) Result Parameter Radium 226 by EPA 903.0 MOD pCi/L Batch # 7345421 11d % 103 Radium (226) 0.18 1.00 12/11/07 12/26/07

NOTE (8)

Date are incomplete without the case parrative.

MDC is determined by instrument performance only.

Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

HOTE (8)

Date are incomplete without the case narrative.

MDC is determined by instrument performance only.

Bold results are greater than the HDC

Result is greater than sample detection limit but less than stated reporting limit.

Kansas Dept of Health and Environment

Client Sample ID: SPI BACKGROUND

Radiochemistry

Lab Sample ID: P7L110245-005

Radium 226 by RPA 903.0 MOD

Work Order:

Matrix:

Radium (226)

KDW45

Date Collected: Date Received:

12/05/07 0000 12/11/07 0945

WATER

besult

Total Uncert. annivais. (2 a+/-) pCi/L Batch # 7345421 Y14 % 106 0.18 1.00 0.17 12/11/07 12/26/07

Kansas Dept of Health and Environment

Client Sample ID: SPI #1

Radiochemistry

Lab Sample ID: F7L110245-006

Work Order: Matrix:

KTW46 WATER Date Collected:

12/05/07 0000

12/11/07 0945 Date Received:

Parameter	lamit	Qual	Total Unmart. (2 o+/-)	RL	NEDC	Prep Date	Amalysis Date	
Radium 226 by	EPA 903.0 MOD	_		Ci/L	Batch 0	7345421	Yld % 85	
Radium (225)	0.40	ð	0.10	1.00	0.20	12/11/07	12/26/07	

NOTE (S)

Data are incomplete without the case narrative.

NDC is determined by instrument performance only. Bold results are greater than the MDC

Result is greater than sample detection limit but less than stated reporting limit.

MOTE(S)

Data are incomplete without the case parrative.

MDC is determined by instrument performance only. Sold results are greater than the MDC

Result is greater than semple detection limit but less than stated reporting limit.

Kansas Dept of Health and Environment

Client Sample ID: SPI #5

Radiochemistry

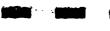
Lab Sample ID: F7L110245-004 Work Order:

Matrix:

KDW43 WATER

Date Collected: Date Received:

12/05/07 0000 12/11/07 0945


Parameter) Jamilt	Que)	Total Unnext. (2 o+/-)	RL	MDC	Frep Date	Analysis Date	
Radium 226 by	EPA 903.0 MOD		D	Ci/L	Batch t	7345421	Y1d % 109	_
Radium (226)	156		13	1	0.2	12/11/07	12/26/07	

MOTE (S)

Data are incomplete without the case marrative. MDC is determined by instrument performance only. Sold results are greater than the MDC

